基于重现理论的单摆系统非线性动力学特性研究RESEARCH ON NONLINEAR DYNAMIC CHARACTERISTICS OF SINGLE PENDULUM SYSTEM BASED ON RECURRENCE THEORY
王立媛
摘要(Abstract):
本文利用分岔图、相图、重现图和重现量化等方法,研究了有阻尼、不同驱动力作用下单摆往复和旋转运动的非线性动力学特性。结果表明:重现图和重现量化测度能够辨识周期运动和混沌运动特征,随着驱动力的增加,单摆系统经历了由周期到混沌以及再由混沌到周期的演变过程,相图和重现图能够清晰展示系统运动轨线的时空分布,重现量化测度中熵和重现时间增加,而最大对角线长度减小,意味着系统复杂性和轨道分离速度增加。
关键词(KeyWords): 单摆;分岔图;相图;重现图;重现量化分析
基金项目(Foundation): 国家自然科学基金资助项目(52171298);; 哈尔滨工程大学校级教学改革项目(JG2023B2510)
作者(Author): 王立媛
参考文献(References):
- [1] YANG L P,WANG L Y,WANG J Q,et al.Nonlinear dynamics of cycle-to-cycle variations in a lean burn natural gas engine with a non-uniform pre-mixture[J].Nonlinear Dynamics.2021,104:2241-2258.DOI:10.1007/s11071-021-06377-4
- [2] 李明达,董乔南.利用非线性动力学系统研究混沌现象[J].物理与工程,2019,29(6):78-88.LI M D,DONG Q N.Research on chaos phenomena using nonlinear dynamics systems[J].Physics and Engineering,2019,29(6):78-88.(in Chinese)
- [3] 赵凯华.从单摆到混沌[J].物理前沿,1993,(1):22-26.ZHAO K H.From simple pendulum to chaos[J].Frontiers of Physics,1993,(1):22-26.(in Chinese)
- [4] 杨博,高娟.从单摆到混沌的动力学研究[J].山西师范大学学报.2017,31(1):55-64.YANG B,GAO J.Dynamics research from pendulum to chaos[J].Journal of Shanxi Normal University,2017,31(1):55-64.(in Chinese)
- [5] 符五久,饶黄云.单摆系统通向混沌的道路[J].大学物理,2008,27(1):5-9.FU W J,RAO H Y.The road to chaos in a pendulum system[J].College Physics,2008,27(1):5-9.(in Chinese)
- [6] 李纪强,周斌,丁益民.单摆混沌现象的研究[J].湖北大学学报.2013,35(4):514-517.LI J Q,ZHOU B,DING Y M.Research on the chaos phenomenon of simple pendulum[J].Journal of Hubei University,2013,35(4):514-517.(in Chinese)
- [7] ECKMANN J P,KAMPHORST S O.Recurrence plots of dynamical systems[J].Europhysics Letters,1987,4(9):973-977.DOI 10.1209/0295-5075/4/9/004
- [8] FRASER A M,SWINNEY H L.Independent coordinates for strange attractors from mutual information[J].Physical Review A,1986,33(2):1134-1140.DOI:https://doi.org/10.1103/PhysRevA.33.1134
- [9] CAO L.Practical method for determining the minimum embedding dimension of a scalar time series[J].Physica D.1997,110(1-2):43-50.DOI:https://doi.org/10.1016/S0167-2789(97)00118-8
- [10] MARWAN N,ROMANO M C,THIEL M,et al.Recurrence plots for the analysis of complex systems[J].Physics reports,2007,438(5-6):237-329.DOI:10.1016/j.phy srep.2006.11.001
- [11] ZBILUT J P,WEBBER C L.Embeddings and delays as derived from quantification of recurrence plots[J].Physics Letters A,1992,171(3-4):199-203.DOI:https://doi.org/10.1016/0375-9601(92)90426-M
- [12] ZBILUT J P,WEBBER C L.Recurrence quantification analysis:introduction and historical context[J].International Journal of Bifurcation and Chaos,2007,17(10):3477-3481.DOI:10.1142/S0218127407019238