弛豫时间谱在研究黏弹性材料蠕变行为中的应用APPLICATION OF RELAXATION TIME SPECTRUM IN STUDYING CREEP BEHAVIOR OF VISCOELASTIC MATERIALS
乔吉超,徐宗睿
摘要(Abstract):
蠕变是黏弹性材料的重要特征,其已被证明是定量研究其与时间相关结构弛豫现象、滞弹性与塑性变形行为的有效手段。同时,蠕变反映了材料在长时间外载荷作用下真实响应进程,抗蠕变性能亦是评估工程材料服役性能以及寿命的关键指标。因此,研究黏弹性材料的蠕变行为,既有助于深入理解非晶固体变形断裂机制,又可对其作为工程材料实际应用提供理论支撑。本文从经典蠕变概念出发,首先介绍蠕变的宏观演化方式与微观机理;其次结合黏弹性本构模型引入弛豫时间谱这一重要概念;最后以非晶合金这种典型黏弹性材料为例,阐述弛豫时间谱的构建方法并详细探讨其在分析非晶合金蠕变行为中的实际应用。本文综合笔者近年来对于非晶固体蠕变行为的研究成果,提出了一种有助于深层次理解非晶固体蠕变机理的新研究方法,并为深入探寻其时间依赖性动力学弛豫行为提供了全新视角。同时,本文所涉及研究方法也可为其他讲授黏弹性力学课程的教师提供参考与借鉴。
关键词(KeyWords): 蠕变;黏弹性理论;弛豫时间谱;非晶合金
基金项目(Foundation): 西北工业大学教育教学改革研究项目资助项目(项目编号:2025JGZ17);西北工业大学研究生教育综合改革发展创新项目(课程改革专项,项目编号:KCJG202513)
作者(Author): 乔吉超,徐宗睿
参考文献(References):
- [1] 杨挺青,罗文波,徐平,等.黏弹性理论与应用[M].北京:科学出版社,2004.YANG T Q,LUO W B,XU P,et al.Viscoelasticity:theory and applications[M].Beijing:Science Press,2004.(in Chinese)
- [2] 乔吉超,梁淑一,张浪渟.黏弹性本构关系构建方法及应用举例[J].力学与实践,2022,44(6):1411-1415.QIAO J C,LIANG S Y,ZHANG L T.Teaching method of viscoelastic theory[J].Mechanics in Engineering,2022,44(6):1411-1415.(in Chinese)
- [3] 乔吉超,郝奇,邢光辉.固体力学内耗理论讲授方法[J].物理与工程,2023,33(2):54-59.QIAO J C,HAO Q,XING G H.Teaching methods of internal friction theory in solid mechanics[J].Physics and Engineering,2023,33(2):54-59.(in Chinese)
- [4] 穆霞英.蠕变力学[M].西安:西安交通大学出版社,1989.MU X Y.Creep mechanics[M].Xi'an:Xi'an Jiaotong University Press,1989.(in Chinese)
- [5] BETTEN J.Creep mechanics[M].Berlin:Springer,2008.
- [6] 刘冬梅,董科,梁颖,等.基于“三位一体”目标的力学一流课程的内涵建设与改革实践[J].物理与工程,2023,33(2):218-224.LIU D M,DONG K,LIANG Y,et al.Connotation construction and reform practice of the first-class mechanics course with the goal of “trinity”[J].Physics and Engineering,2023,33(2):218-224.(in Chinese)
- [7] 周光泉,刘孝敏.粘弹性理论[M].合肥:中国科学技术大学出版社,1996.ZHOU G Q,LIU X M.Viscoelasticity theory[M].Hefei:University of Science and Technology of China Press,1996.(in Chinese)
- [8] 汪卫华.非晶态物质的本质和特性[J].物理学进展,2013,33(5):177-351.WANG W H.The nature and properties of amorphous matter[J].Progress in Physics,2013,33(5):177-351.(in Chinese)
- [9] JU J D,JANG D,NWANKPA A,et al.An atomically quantized hierarchy of shear transformation zones in a metallic glass[J].Journal of Applied Physics,2011,109(5):053522.
- [10] HUO L S,ZENG J F,WANG W H,et al.The dependence of shear modulus on dynamic relaxation and evolution of local structural heterogeneity in a metallic glass[J].Acta Materialia,2013,61(12):4329-4338.
- [11] 徐宗睿,郝奇,张浪渟,等.基于准点缺陷理论探索非晶合金蠕变机制[J].力学学报,2022,54(6):1590-1600.XU Z R,HAO Q,ZHANG L T,et al.Probing into the creep mechanism of amorphous alloy based on quasi-point theory[J].Chinese Journal of Theoretical and Applied Mechanics,2022,54(6):1590-1600.(in Chinese)
- [12] 许福,李科锋,邓旭辉,等.基于分数阶微分流变模型的非晶合金黏弹性行为及流变本构参数研究[J].物理学报,2016,65(4):046101.XU F,LI K F,DENG X H,et al.Research on viscoelastic behavior and rheological constitutive parameters of metallic glasses based on fractional-differential rheological model[J].Acta Physica Sinica,2016,65(4):046101.(in Chinese)
- [13] RINALDI R,GAERTNER R,CHAZEAU L,et al.Modelling of the mechanical behaviour of amorphous glassy polymer based on the Quasi Point Defect theory—Part Ⅰ:Uniaxial validation on polycarbonate[J].International Journal of Non-Linear Mechanics,2011,46(3):496-506.
- [14] HAO Q,LYU G J,PINEDA E,et al.A hierarchically correlated flow defect model for metallic glass:Universal understanding of stress relaxation and creep[J].International Journal of Plasticity,2022,154:103288.