63 | 0 | 6 |
下载次数 | 被引频次 | 阅读次数 |
量子信息科学教学既存在基础概念原理抽象、符号系统复杂的教学难点,又面临多学科融合交叉带来的知识体系庞杂,实验操作繁复、实验成本高昂等实际问题。近年来,量子游戏、虚拟仿真实验等交互式教学策略引起了广泛的关注,它们能够引导学生形成自驱式沉浸学习以提升学习效果,也能降低实物实验成本,适合应对量子信息课程教学的现状问题。本文先分析虚拟仿真实验、量子游戏等交互式教学在量子信息课程教学中的需求,再通过大量资料总结其在量子信息课程中的应用现状,最后结合“量子信息技术及应用”的授课和调查情况,介绍如何将交互式教学资源融入课程教学,为后续的教学实践和应用推广提供思路。
Abstract:In the teaching process, quantum information science faces issues such as the abstraction of fundamental concepts and principles, the complexity of the symbolic system, and the extensive knowledge system brought about by the integration and intersection of multiple disciplines. There is a need for experimental verification, but this is accompanied by complex operations and high experimental costs. In recent years, interactive teaching strategies such as quantum games and virtual simulation experiments have attracted widespread attention. They can guide students to engage in self-driven immersive learning to enhance learning outcomes and also reduce the costs of physical experiments, making them suitable for addressing current issues in the teaching of quantum information courses. This paper first analyzes the demand for interactive teaching methods like virtual simulation experiments and quantum games in the teaching of quantum information courses, then summarizes their current application status in these courses through extensive information. Finally, combining the teaching and survey situation of the team's course “Quantum Information Technology and Its Applications, ” the paper integrates the surveyed interactive teaching resources into teaching design and application, providing ideas for subsequent teaching practices and the promotion of applications.
[1] DOWLING J P,MILBURN G J.Quantum technology:The second quantum revolution[J].Philosophical Transactions of the Royal Society A,2003,361:1655-1674.
[2] 郭光灿.颠覆:迎接第二次量子革命[M].北京:科学出版社,2022.GUO G C.Disruption:Embracing the second Quantum revolution[M].Beijing:Science Press,2022.
[3] PIISPANEN L,ANTTILA D,SKULT N.Online Quantum Game Jam[C].Proceedings of the 7th International Conference on Game Jams,Hackathons and Game Creation Events (ICGJ 23).Association for Computing Machinery,New York,USA,2023,18-27.
[4] FALETIC S,BITZENBAUER P,BONDANI M.et al.Contributions from Pilot Projects in Quantum Technology Education as Support Action to Quantum Flagship[DB/OL].arXiv preprint,2023,arXiv:2303.07055
[5] 陈巍,银振强,韩正甫,等.网络空间安全本科量子信息教学实践[J].网络与信息安全学报,2019,5(3):81-88.CHEN W,YIN Z Q,HAN Z F,et al.Quantum information course for the undergraduate students of cyber security[J].Chinese Journal of Network and Information Security,2019,5(3):81-88.(in Chinese)
[6] 尚涛,刘建伟,张国锋,等.量子密码课程教学实践[J].计算机教育,2023(3):9-13.SHANG T,LIU J W,ZHANG G F,et al.Quantum cryptography course teaching practice[J].Computer Education,2023(3):9-13.(in Chinese)
[7] 赵丽娟,尹丽星,徐志钮.量子通信中量子密钥分发教学仿真实验设计[J].实验技术与管理,2022,39(8):141-145.ZHAO L J,YIN L X,XU Z N.Design of quantum key distribution teaching simulation experiment in quantum communication[J].Experimental Technology and Management,2022,39(8):141-145.(in Chinese)
[8] MIGDAL P,JANKIEWICZ K,GRABARZ P.et al.Visualizing quantum mechanics in an interactive simulation—Virtual Lab by Quantum Flytrap[J].Optical Engineering,2022,61(8):081808.
[9] LA COUR B R,MAYNARD M,SHROFF P et al.The Virtual Quantum Optics Laboratory[C].2022 IEEE International Conference on Quantum Computing and Engineering (QCE),Broomfield,CO,USA,2022,677-687.
[10] PARAKH A,SUBRAMANIAM M,OSTLER E.QuaSim:A virtual quantum cryptography educator[C].2017 IEEE International Conference on Electro Information Technology (EIT),Lincoln,New York,USA,2017:600-605.
[11] LOPEZ-INCERA A,DUR W.Entangle me! A game to demonstrate the principles of quantum mechanics[J].American Journal of Physics,2019,87(2):95-101.
[12] LOPEZ-INCERA A,DUR W,HARTMANN A.Encrypt me! A game-based approach to Bell inequalities and quantum cryptography[J].European Journal of Physics,2020,41(6):065702.
(1)教育部.教育部高等教育司关于开展2024年度普通高等学校本科专业设置工作的通知.教高司函[2024]7号,2024-07-12.
(2)教育部.教育部关于开展国家虚拟仿真实验教学项目建设工作的通知.教高[2018]5号,2018-06-05.
(3)工业和信息化部,教育部,文化和旅游部,国家广播电视总局,国家体育总局.关于印发《虚拟现实与行业应用融合发展行动计划(2022—2026年)》的通知.工信部联电子[2022]148号,2022-10-28.
(4)工业和信息化部办公厅,教育部办公厅,文化和旅游部办公厅,国务院国资委办公厅,广电总局办公厅.关于印发《元宇宙产业创新发展三年行动计划(2023—2025年)》的通知.工信厅联科[2023]49号,2023-08-29.
(5)Quantum AI Foundation.Results of the Quantum Games Hackathon 2023.https://www.qaif.org/contests/quantum-games-hackathon
(6)U.S.National Science Foundation.Preparing Students for the Second Quantum Revolution Using Research-Validated Learning Tools.Award Abstract # 2309260,https://www.nsf.gov/awardsearch/showAward?AWD_ID=2309260.
(7)U.S.National Science Foundation.Collaborative Research:Advancing Quantum Education by Adaptively Addressing Misconceptions in Virtual Reality.Award Abstract # 2302818,https://www.nsf.gov/awardsearch/show Award?AWD_ID=2302818&HistoricalAwards=false.
(8)李高翔.量子密钥分发虚拟仿真实验.https://www.ilab-x.com/details/page?id=4297&isView=true.
(9)吴青林.量子保密通信虚拟仿真实验.https://www.ilab-x.com/details/page?id=6127&isView=true.
(10)苏奇平.光量子的性质虚拟仿真实验.https://www.ilab-x.com/details/page?id=5234&isView=true.
(11)张威.离子阱量子计算虚拟仿真实验教学系统.https://www.ilab-x.com/details/page?id=6718&isView=true.
(12)王琴.量子纠缠组网虚拟仿真实验.https://xnfz.njupt.edu.cn/exp/47.htm-l?type=.
(13)量旋科技.应用案例|北京理工大学:利用教学机量子计算机,将量子技术实践引入课堂.[2023-06-15],https://www.spinq.cn/newsDetail/83a39f0a-7673-482b-8dcc-b933a5a9739c.
(14)量旋科技.应用案例|哈工大(深圳):理论教学+真机实验,凿开量子教育的围墙.[2023-11-03],https://www.spinq.cn/newsDetail/71928e19-a3aa-402c-ba4d-8a10218ec770.
(15)量旋科技.应用案例|挪威奥斯陆城市大学:SpinQ量子计算机助力量子教育、研究、科普“三位一体”发展.[2024-01-21],https://www.spinq.cn/newsDetail/5590aa24-5e63-4729-b5e7-d2520fc53c14.
(16)量旋科技.应用案例|西澳大学:量旋桌面型量子计算机,助力百年名校打造真实量子教学交互体验.[2023-05-24],https://www.spinq.cn/newsDetail/472237f3-a08d-429f-901c-87571ad749ba.
(17)量旋科技.应用案例|墨西哥国立自治大学:引进拉丁美洲首个量子计算设备,开启量子计算新篇章.[2023-12-14],https://www.spinq.cn/newsDetail/c8cb91c2-efa7-4795-a614-fe64bffa39ac.
(18)量旋科技.应用案例|印度尼西亚万隆理工学院:引进印尼首台量子计算机,助力印尼技术研究创新.[2023-12-21],https://www.spinq.cn/newsDetail/ed50640c-7c00-4e92-9a01-40dc0bdfee43.
(19)国仪量子.南京大学依托国仪量子教学机开设量子计算实验课程.[2019-11-01],https://www.instrument.com.cn/news/20191101/515996.shtml.
(20)国仪量子.深圳大学金刚石量子计算教学机实验课程正式开课.[2021-06-24],https://ibook.antpedia.com/x/632181.html.
(21)国仪量子.国仪量子量子计算装置交付美澳发达国家.[2021-12-16],https://zhuanlan.zhihu.com/p/446305597.
(22)PIISPANEN L,PFAFFHAUSER M,WOOTTON J.et al.Defining Quantum Games.arXiv preprint,2022,arXiv:2206.00089.
(23)LEIFER M S.Gamifying quantum theory.Chapman University Digital Commons,2017,https://digitalcommons.chap man.edu/scs_articles/541/.
(24)University of St Andrews.QuVis:the Quantum Mechanics Visualisation Project.https://www.st-andrews.ac.uk/physics/qu-vis/flash.html.
(25)国盛量子.量子测量演示机.https://www.gshqt.com/pro-show/23.html.
基本信息:
DOI:
中图分类号:O413-4;G642
引用信息:
[1]吴田宜,东晨,党可征等.交互式教学在量子信息课程中应用的进展研究[J].物理与工程,2025,35(03):23-30.
基金信息:
国防科技大学信息通信学院教育教学研究重点课题(JY23A002);国防科技大学信息通信学院教育教学研究一般课题(JY23B006)