流体力学课程五维式教学体系构建与实践CONSTRUCTION AND PRACTICE OF A FIVE-DIMENSIONAL TEACHING SYSTEM FOR FLUID MECHANICS COURSES
彭维红,刘小雨,敬雅文,王浩屹,张薇
摘要(Abstract):
针对流体力学中韦伯数(We)、雷诺数(Re)等无量纲参数抽象难教的特点,以液滴润湿煤尘为工程载体,构建“思教融合、虚实相济、力美同行、创新创意、实践探索”五维式教学体系。剖析We-Re的物理意义,设计虚实协同实验,建立标度律模型,开展参数相关性分析,创新性引入科学诗画辅助理解,注重思教融合。教学实践显示,这种五维式教学体系可以促进教育教学理论的创新与发展,引导学生沉浸在理论创新、实践探索与诗情画意之中,激发学生的学习兴趣、提高学生的学习效果和培养学生的创新能力。
关键词(KeyWords): 无量纲参数;液滴润湿;五维式教学体系;科学诗画
基金项目(Foundation): 江苏省力学教育教学研究课题“多元协同-多维感知:构建流体力学类课程综合育人新模式”(2024jslxjy206);; 中国矿业大学“动力中国·课程思政”示范课程“流体力学A”(2023KCSZ13);工程力学示范专业(2022KCSZ02)
作者(Author): 彭维红,刘小雨,敬雅文,王浩屹,张薇
参考文献(References):
- [1]郭鉴锋.复杂情况下液滴气动变形破碎实验研究[D].合肥:中国科学技术大学,2024.GUO J F. Experimental study on aerobreakup of droplets under complex conditions[D]. Hefei:University of Science and Technology of China, 2024.(in Chinese)
- [2]李文.液滴运动的动力学特性及传热特性研究[D].南京:南京航空航天大学,2023.LI W. Numerical research on dynamics and heat transfer characteristics of droplet[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2023.(in Chinese)
- [3]李聪,王佳利,王志敏,等.液滴撞击加热壁面的实验平台设计与教学应用[J].实验技术与管理,2025(1):238-245.LI C, WANG J L, WANG Z M, et al. Designing and teaching application of an experimental platform for a droplet impacting on a heated surface[J]. Experimental Technology and Management, 2025(1):238-245.(in Chinese)
- [4]钟凯,秦静,裴毅强,等.单液滴撞击薄液膜后冠状结构的破碎过程[J].中南大学学报(自然科学版),2022(4):1497-1505.ZHONG K, QIN J, FEI Y Q, et al. Breakup process of crown spray induced by impact on thin oil film of single droplet[J]. Journal of Central South University(Science and Technology), 2022(4):1497-1505.(in Chinese)
- [5]李青林,王槿,邓志超,等.动态气泡法测量液体表面张力及空气黏滞系数[J].物理与工程,2025(2):163-169.LI Q L, WANG J, DENG Z C, et al. Measurement of liquid surface tension and air viscosity coefficient using dynamic bubble method[J]. Physics and Engineering, 2025(2):163-169.(in Chinese)
- [6]WANG A, SONG Q, YAO Q. Study on inertial capture of particles by a droplet in a wide Reynolds number range[J].Journal of Aerosol Science, 2016, 93:1-15.
- [7]张薇,宋强,张帆,等.酸洗脱除矿物对煤化学组成及润湿性的影响[J].煤炭转化,2019(3):1-9.ZHANG W, SONG Q, ZHANG F, et al. Effects of acid treatment and mineral removal on coal chemical composition and wettability[J]. Coal Conversion, 2019(3):1-9.(in Chinese)
- [8]李明,关子杰.抑尘液滴与尘堆表面之间的动态接触行为研究[J].安全与环境学报,2021(6):7.LI M, GUAN Z J. Research on dynamic contact behavior between dust suppressing liquid drop let and dust pile surface[J]. Journal of Safety and Environment, 2021(6):7.(in Chinese)
- [9]QUETZERI-SANTIAGO M A, ALFONSO A. CastrejónPita, CASTREJON-PITA R. The effect of surface roughness on the contact line and splashing dynamics of impacting droplets[J]. Scientific Reports, 2019(1):15030.
- [10]YIN Z, SU R, ZHANG W, et al. Oscillation characteristics of single droplet impacting vertically on smooth surfaces using volume of fluid method[J]. Microgravity Science and Technology, 2021(5):58.
- [11]罗根华,李博,丁莹莹,等.煤尘化学组成及结构参数对煤尘润湿性的影响规律[J].大连交通大学学报, 2016(3):64-67.LUO G H, LI B, DING Y Y, et al. Study on influence of coal dust wettability by chemical composition and structure parameters[J]. Journal of Dalian Jiaotong University,2016(3):64-67.(in Chinese)
- [12]LI C, ZHANG J, HAN J, et al. A numerical solution to the effects of surface roughness on water-coal contact angle[J]. Scientific Reports, 2021(1):459.
- [13]CLANET C, BEGUIN C, RICHARD D, et al. Maximal deformation of an impacting drop[J]. Journal of Fluid Mechanics, 2004, 517:199-208.