关于《物理光学》教材中电磁波波函数时间项正负号概念的澄清及物理意义的讨论CLARIFICATION AND DISCUSSION OF THE TIME TERM OF PLUS OR MINUS SIGN FOR ELECTROMAGNETIC WAVE FUNCTION IN THE TEXTBOOK OF PHYSICAL OPTICS
袁茂辉,黄黔豫,张轩浩,姜曼,韩凯
摘要(Abstract):
在电磁波或光学类教材中,电磁场的波函数的时间因子通常写成负号。而在《大学物理》教材中关于波动与振动教学内容,由振动方程推导出波动方程时,其时间项通常表示为正号。笔者在教学过程中,常有学生提出此类疑问,因此有必要对时间项的正负号概念及物理意义进行讨论,从而更好地帮助学生理解其物理图像。本文从电场和磁场波动方程出发,给出其通解的物理意义和波动的相关概念,详细讨论了电磁波波函数中时间项正负号的物理内涵,在此基础上分析了在处理电磁波或者光学类问题时将波函数的时间因子表达为负号的现实考虑,澄清和解释了电磁波波函数通常表示为负号的疑问。
关键词(KeyWords): 波函数;电磁波;时间项;正负号;相位
基金项目(Foundation): 湖南省普通本科高校教学改革研究项目(项目批准号:202502000010)
作者(Author): 袁茂辉,黄黔豫,张轩浩,姜曼,韩凯
参考文献(References):
- [1]云茂金,刘眉洁,王进,等.“物理光学”一流课程建设探索与实践[J].物理与工程,2023,33(2):101-104.YUN M J, LIU M J, WANG J, et al. Exploration and practice on the construction of first-class course of physical optics[J]. Physics and Engineering, 2023,33(2):101-104.(in Chinese)
- [2]教育部.关于一流本科课程建设的实施意见(教高[2019]8号)[Z].2019.Ministry of Education. Opinions on the construction of firstclass undergraduate courses([2019]8)[Z]. 2019.(in Chinese)
- [3]张宝武,孔明,许新科,等.物理光学中多光束叠加强度求解方法的探讨[J].物理与工程,2024,34(2):98-103.ZHANG B W, KONG M, XU X K, et al. Discussion on the method of solution to multi-beam superposition intensity in physical optics[J]. Physics and Engineering, 2024,34(2):98-103.(in Chinese)
- [4]李俊昌,陈劲波,樊则宾,等.衍射的基尔霍夫传递函数及瑞利索末菲传递函数[J].光电子·激光,2002,13(1):87-89.LI J C, CHEN J B, FAN Z B, et al. The kirchhoff transfer function and Rayleigh-Sommerfeld transfer function of diffraction[J]. Journal of Optoelectronics Laser, 2002,13(1):87-89.(in Chinese)
- [5]陈培锋.如何在“电动力学”课程中统一描述光的传输模型[J].大学物理,2022,41(4):7-10.CHEN P F. How to uniformly describe the transmission model of light in the course of electrodynamics[J]. College Physics, 2022,41(4):7-10.(in Chinese)
- [6]郁道银,谈恒英.工程光学[M].4版.北京:机械工业出版社,2015.YU D Y, TAN H Y. Engineering Optics[M].4th ed. Beijing:China Machine Press, 2015.(in Chinese)
- [7]梁铨廷.物理光学[M].5版.北京:电子工业出版社,2018.LIANG Q T. Physical Optics[M].5th ed. Beijing:Electronic Industry Press, 2018.(in Chinese)
- [8]姜宗福,刘文广,杨丽佳,等.物理光学导论[M].2版.北京:科学出版社,2018.JIANG Z F, LIU W G, YANG L J, et al. Physical optics[M].2nd ed. Beijing:Science Press, 2018.(in Chinese)
- [9]鲁欣,任朗,袁炳南译.场论[M].8版.北京:高等教育出版社,2012.LU X, REN L, YUAN B N. Field theory[M].8th ed. Beijing:Higher Education Press, 2012.(in Chinese)
- [10]LIPSON A, LIPSON S G, LIPSON H. Optical physics[M]. 4th ed. New York:Cambridge University Press,2011.
- [11]马文蔚,周雨青,解希顺.物理学[M].6版.北京:高等教育出版社,2014.MA W W, ZHOU Y Q, XIE X S. Physics[M].6th ed.Beijing:Higher Education Press, 2014.(in Chinese)
- [12]束星北.关于波动方程式之“超前解”[J].物理学报,1950,7(6):97-104.SHU X B. The“lead solution” of the wave equation[J].Acta Physica Sinica, 1950,7(6):97-104.(in Chinese)
- [13]杨俊秀,赵文来,夏海霞.达朗贝尔方程及其解教学思考[J].电气电子教学学报,2011,33(2):113-115.YANG J X, ZHAO W L, XIA H X. Consideration of teaching on D'Alembert equations and its solutions[J].Journal of EEE, 2011,33(2):113-115.(in Chinese)
- [14]姚端正,李中辅.用达朗贝尔公式求解二、三维波动方程的初值问题[J].大学物理,1977,16(4):18-21.YAO D Z, LI Z F. Initial-value problems for two-and three-dimensional wavelength equations solved by D'Alembert formula[J]. College Physics, 1977, 16(4):18-21.(in Chinese)
- [15]刘宝容,丘国春.从达朗贝尔方程到推迟势教学方法探讨[J].广西民族大学学报(自然科学版),2014,20(3):111-113.LIU B R, QIU G C. Discussion on teaching of the D'Alembert equations to retarded potential[J]. Journal of Guangxi Minzu University, 2014,20(3):111-113.(in Chinese)
- [16]COLLIN R E. Field theory of guided waves[M]. 2nd ed.Hoboken:Wiley-IEEE Press, 1991.
- [17]梁昆淼,俞超,邱树业.力学讨论[M].成都:四川教育出版社,1987.LIANG K M, YU C, QIU S Y. Mechanical discussion[M].Chengdu:Sichuan Education Press, 1987.(in Chinese)