狄拉克方程在库仑势下的负能量本征值THE NEGATIVE ENERGY EIGENVALUES OF THE DIRAC EQUATION SUBJECT TO A COULOMB POTENTIAL
王怀玉
摘要(Abstract):
本文求解了狄拉克方程在哈密顿量中的势能是库仑势时束缚态的本征值。文献上求出的这个哈密顿量时,一个粒子的束缚态的能量是正的但小于这个粒子静止质量并将这样的本征值称为正能量解。本文的推导结果表明,实际上还有一个束缚态的负能量解,其能量本征值与正能量一一对应且互为相反数。我们称之为关于正负能解的对称性。本文的结果显示,狄拉克方程在哈密顿量中的势能是库仑势时,无论是束缚态还是非束缚态,都有关于正负能量解的对称性。
关键词(KeyWords): 狄拉克方程;正能量解;负能量解;正负能量的对称性
基金项目(Foundation): 国家重点研发计划资助项目(2018YFB0704304-3)
作者(Author): 王怀玉
参考文献(References):
- [1] GORGON W.Die Energieniveaus des Wasserstoffatoms nach der Diracschen Quantentheorie des Elektrons[J].Zeitschrift für Physik A Hadrons and nuclei,1928,48(1):11-14.
- [2] DARWIN C G.The wave equations of the electron[J].Proceedings of the Royal Society of London.Series A,Containing Papers of a Mathematical and Physical Character,1928,118(780):654-680.
- [3] 曾谨言.量子力学下册[M].北京:科学出版社,1980.ZENG J Y.Quantum mechanics,2nd volume[M].Beijing:Science Press,1980.(in Chinese)
- [4] 杨泽森.高等量子力学[M].2版.北京:北京大学出版社,1995.YANG Z S.Advanced quantum mechanics[M].2nd ed.Beijing:Peking University Press,1995.(in Chinese)
- [5] 喀兴林.高等量子力学[M].2版.北京:高等教育出版社,2001.KA X L.Advanced quantum mechanics[M].2nd ed.Beijing:Higher Education Press,2001.(in Chinese)
- [6] 刘希明.高等量子力学[M].2版.济南:山东科学技术出版社,2002.LIU X M.Advanced quantum mechanics[M].2nd ed.Jinan:Shandong Science and Technology Press,2002.(in Chinese)
- [7] 苏汝铿.量子力学[M].北京:高等教育出版社,2002.SU R K.Quantum mechanics[M].Beijing:Higher Education Press,2002.(in Chinese)
- [8] SCHIFF L I.Quantum mechanics[M].New York:McGraw-Hill Book Company,Inc.,1949.
- [9] MESSIAH A.Quantum mechanics[M].Amsterdam:North-Holland Publishing Company,1962.
- [10] BJORKEN J D,DRELL S D.Relativistic quantum mechanics[M].New York:McGraw-Hill Book Company,Inc.,1965.
- [11] YNDURAIN F J.Relativistic quantum mechanics and introduction to field theory[M].Berlin:Springer,1996.
- [12] FLUGGE S.Practical quantum mechanics[M].Berlin:Springer-Verlag,1999.
- [13] BRANSDEN B H,JOACHAIN C J.Quantum mechanics[M].2nd ed.London:Pearson Education Limited,2000.
- [14] GREINER W.Relativistic quantum mechanics wave equations[M].3rd ed.Berlin:Springer,2000.
- [15] ABERS E S.Quantum mechanics[M].New Jersey:Pearson Educations,Inc.,2004.
- [16] THALLER B.Advanced visual quantum mechanics[M].Berlin:Springer-Verlag,2005.
- [17] SCHWABL F.Advanced quantum mechanics[M].Berlin:Springer-Verlag,2005.
- [18] WACHTER A.Relativistic quantum mechanics[M].Berlin:Springer-Verlag,2011.
- [19] DIRAC P A M.A Theory of Electrons and Protons[J].Proceedings of the Royal Society of London.Series A,Containing Papers of a Mathematical and Physical Character,1930,126(801):360-365.https://www.jstor.org/stable/95359
- [20] WANG H Y.New results by low momentum approximation from relativistic quantum mechanics equations and suggestion of experiments[J].Journal of Physics Communications,2020,4:125004.
- [21] WANG H Y.Fundamental formalism of statistical mechanics and thermodynamics of negative kinetic energy systems[J].Journal of Physics Communications,2021,5:055012.
- [22] WANG H Y.Macromechanics and two-body problems[J].Journal of Physics Communications,2021,5:055018.
- [23] 王怀玉.维里定理及其对称性[J].华北科技学院学报,2021,18(4):1-10.WANG H Y.Virial theorem and its symmetry[J].Journal of North China Institute of Science and Technology,2021,18(4):1-10.(in Chinese)
- [24] 王怀玉.基于狄拉克方程推导求解一维势垒问题[J].华北科技学院学报,2022,19(1):97-107.WANG H Y.Resolving problems of one-dimensional potential barriers based on Dirac equation[J].Journal of North China Institute of Science and Technology,2022,19(1):97-107.(in Chinese)
- [25] WANG H Y.The modified fundamental equations of quantum mechanics[J].Physics Essays,2022,35(2):152-164.
- [26] WANG H Y.The behaviors of the wave functions of small molecules with negative kinetic energies[J].Physics Essays,2023,36(2):140-148.
- [27] WANG H Y.A physical mechanism of the generation of stable positive kinetic energy systems and a qualitative explanation of the proportions of the four ingredients in the universe[J].Physics Essays,2023,36(4):385-398.