从单粒子到多体系统:精确对角化在计算物理教学中的实践FROM SINGLE PARTICLES TO MANY-BODY SYSTEMS:THE PRACTICE OF EXACT DIAGONALIZATION IN COMPUTATIONAL PHYSICS TEACHING
邬汉青,姚道新
摘要(Abstract):
精确对角化是求解量子力学问题最直观的数值方法,广泛应用于少体与多体系统,是计算物理课程的核心内容之一。本文基于“由浅入深”的教学理念,系统介绍了如何在本科计算物理课程中讲授精确对角化方法:从单粒子系统出发,逐步拓展至多体量子系统。通过一系列精心设计的教学示例,学生不仅掌握了基矢选取、对称性使用、矩阵构建与对角化等关键步骤,也深入理解了该方法的优势与局限。这一教学过程有效衔接了量子力学形式体系与前沿多体数值方法,为学生后续学习密度矩阵重整化群、张量网络等高级多体计算方法奠定了坚实基础。
关键词(KeyWords): 精确对角化;量子力学;定态薛定谔方程;多粒子系统;多体基
基金项目(Foundation): 国家自然科学基金面上项目(12474248);; 中山大学2024年度校级教学质量工程项目(教务[2023]207号)
作者(Author): 邬汉青,姚道新
参考文献(References):
- [1]THIJSSEN J M.Computational physics[M].2nd ed.Cambridge:Cambridge University Press,2007.
- [2]PRESS H,TEUKOLSKY S.A,VETTERLING W T,et al.Numerical recipes:The art of scientific computing[M].3rd ed.Cambridge:Cambridge University Press,2007.
- [3]LANCZOS C.An iteration method for the solution of the eigenvalue problem of linear differential and integral operators[J].Journal of Research of the National Bureau of Standards,1950,45(4):255-282.
- [4]SANDVIK W.Computational studies of quantum spin systems[C].AIP Conference Proceedings.Puerto Rico:AIP,2010:135-338.
- [5]WHITE R.Density matrix formulation for quantum renormalization groups[J].Physical Review Letters,1992,69(19):2863-2866.
- [6]OR??S R.Tensor networks for complex quantum systems[J].Nature Reviews Physics,2019,1(9):538-550.
- [7]XIANG T.Density matrix and tensor network renormalization[M].Cambridge:Cambridge University Press,2023.
- [8]冉世举.张量网络[M].北京:首都师范大学出版社,2022.RAN J.Tensor networks[M].Beijing:Capital Normal University Press,2022.(in Chinese)
- [9]蔡子.机器学习方法在量子多体物理中的应用[J].物理,2017,46(9):590-596.CAI Z.Application of machine learning methods in quantum many-body physics[J].Physics (Beijing),2017,46(9):590-596.(in Chinese)