复合振子阵列声子晶体的宽带噪声抑制特性实验研究EXPERIMENTAL STUDY ON BROADBAND NOISE SUPPRESSION CHARACTERISTICS OF COMPOSITE OSCILLATOR ARRAY PHONONIC CRYSTALS
朱红伟,林亨泽,曹海江,张新超,史庆藩
摘要(Abstract):
本文利用周期性声子晶体实验平台,通过测试木柱、木柱-珍珠棉(EPE)复合体及珍珠棉空筒三种振子形式,结合四方排布与三角排布两种周期性排列结构,系统探究了不同参数对声子晶体带隙特性的影响。实验结果表明:四方排布木柱阵列相比三角排布显著扩宽带隙(BG1带宽1.2k Hz~0.7k Hz;BG2带宽1.6k Hz~0.9k Hz);木柱-珍珠棉复合振子通过耦合布拉格散射与局域共振,将高频带隙延展至8kHz(BG2带宽4.7k Hz),同时提升低频吸声效率20%。该实验在厘米级周期结构中实现1.3~8.0k Hz宽带噪声抑制,为交通及工业场景(如1~2k Hz机械噪声、2~6k Hz变压器噪声)的声子晶体降噪设计提供关键参数依据。另外,本文的实验设计还可以作为研究性实验的内容纳入大学物理实验教学,帮助学生深入理解带隙的概念以及物理在工程应用中的重要性。
关键词(KeyWords): 声子晶体;带隙特性;噪声抑制;复合振子;布拉格散射;局域共振
基金项目(Foundation): 内蒙古自治区自然科学基金(No.2023QN01015);; 河北省大学生创新创业训练计划项目(No.202411775154);; 包头师范学院高层次人才引进科研启动基金(No.BTTCRCQD2023-007)
作者(Author): 朱红伟,林亨泽,曹海江,张新超,史庆藩
参考文献(References):
- [1]曾钦娥,高亮,侯博文,等.轨道交通地下站台低频结构噪声预测及其传播特性研究[J].振动与冲击,2021(8):278-285.ZENG Q E, GAO L, HOU B W, et al. Prediction and propagation characteristics of low-frequency structural noise in underground platforms of rail transit[J]. Vibration and Shock, 2021(8):278-285.(in Chinese)
- [2]王朝亮,吴晓龙,张良涛,等.市域轨道交通高架列车车外噪声源识别试验[J].噪声与振动控制,2023,43(2):185-189.WANG Z L, WU X L, ZHANG L T, et al. Identification test of external noise sources for elevated trains in urban rail transit[J]. Noise and Vibration Control, 2023,43(2):185-189.(in Chinese)
- [3]柏育材,王志键.交通噪声防治措施及降噪材料研究进展[J].上海船舶运输科学研究所报,2023(6):60-66.BO Y C, WANG Z J. Research progress on traffic noise prevention and control measures and noise reduction materials[J]. Shanghai Ship Transport Science Research Institute,2023(6):60-66.(in Chinese)
- [4]孙小峰,曹心原,张行生.道路声屏障组合吸声结构设计与评估[J].科学技术与工程,2024(14):5767-5774.SUN X F, CAO X Y, ZHANG X S. Design and evaluation of road sound barrier combination absorption structure[J].Science Technology and Engineering, 2024(14):5767-5774.(in Chinese)
- [5]BARRERA C S, TARDIFF J L. Static and dynamic properties of eggshell filled natural rubber composites for potential application in automotive vibration isolation and dam[J].Journal of Cleaner Production, 2022(353):131656.
- [6]朱永明,周建民,司远,等.聚苯颗粒混凝土复合墙板隔声性能试验研究与理论分析[J].力学季刊,2015, 36(1):115-124.ZHU Y M, ZHOU J M, SI Y, et al. Experimental study and theoretical analysis of sound insulation performance of polystyrene particle concrete composite wall panels[J]. Chinese Quarterly of Mechanics, 2015, 36(1):115-124.(in Chinese)
- [7]吴九汇,马富银,张思文,等.声学超材料在低频减振降噪中的应用评述[J].机械工程学报,2016, 52(13):68-78.WU J H, MA F Y, ZHANG S W, et al. Review of applications of acoustic metamaterials in low-frequency vibration and noise reduction[J]. Journal of Mechanical Engineering,2016, 52(13):68-78.(in Chinese)
- [8]LIU Z, et al. Locally resonant sonic materials[J]. Science2000, 289(5485):1734-1736.
- [9]SIGALAS M, ECONOMOU E. Band structure of elastic waves in two-dimensional systems[J]. J. Sound Vibration,1993, 158(2):377-382.
- [10]ZHANG S, et al. Wood-based phononic crystals for lowfrequency sound insulation[J]. Applied Acoustics 2021,176:107867.
- [11]KUSHWAHA M S, HALEVI P, MART??NEZ G, et al.Theory of acoustic band structure of periodic elastic composites[J]. Phys.Rev.B, 1994, 49(4):2313-2322.
- [12]ASSOUAR M, et al. Acoustic metasurface for broadband sound absorption[J]. APL, 2016, 108(9):093505.
- [13]DEYMIER P A.声学超颖材料与声子晶体[M].舒海生,郑金兴,史肖娜,等,译.北京:国防工业出版社, 2016.DEYMIER P A. Acoustic metamaterials and phononic crystals[M]. Trans. by SHU H S, ZHENG J X, SHI X N,et al. Beijing:National Defense Industry Press, 2016.(in Chinese)
- [14]SIGALAS M, ECONOMOU E N. Band structure of elastic waves in two dimensional systems[J]. Solid State Commun., 1993, 86(3):141-143.
- [15]VINCENT L, GRUYTER D. Phononic crystals:Artificial crystals for sonic, acoustic, and elastic waves[M]. Springer, New York, NY, 2020.
- [16]温熙森.光子/声子晶体理论与技术(修订版)[M].北京:科学出版社, 2021.WEN X S. Theory and technology of photonic/phononic crystals(revised edition)[M]. Beijing:Science Press,2021.(in Chinese)
- [17]王刚.声子晶体局域共振带隙机理及减振特性研究[D].长沙:国防科学技术大学,2007.WANG G. Study on the local resonance band gap mechanism and vibration reduction characteristics of phononic crystals[D]. Changsha:National University of Defense Technology, 2007.(in Chinese)
- [18]ZHANG X C, ZHENG N, GUO F Z, et al. The acoustic Galton board[J]. Eur.J.Phys., 2024(45):065503.
- [19]MALDOVAN M, THOMAS E L. Periodic materials and interference lithography:For photonics, phononics and mechanics[M]. Wiley-VCH Verlag Gmb H&Co. KGa A,2009.
- [20]SANDBERG U. Peak noise energy concentrates at 1.25~2k Hz frequency range for passenger vehicles at 80km/h[J]. J.Sound Vibration, 2001, 278(3):683-707.