人工智能背景下物理教学改革的思考与实践REFLECTIONS AND PRACTICES ON PHYSICS EDUCATION REFORM IN THE ERA OF ARTIFICIAL INTELLIGENCE
杨菲宇,杨亚宏
摘要(Abstract):
人工智能的发展对人们的生活、学习和工作方式产生了深刻影响,也改变了科学研究的范式。同时,人工智能作为一种新质生产力,在方法论方面的突破,也为高校教育改革提供了新的机遇。本文探讨了人工智能背景下物理教学改革的思考,重点从计算方法的优化、实验教学与数据分析、跨学科融合和课程思政等方面,提出了具体的改革思路,以提升学生的实践创新能力,培养适应大数据和人工智能时代的高素质人才。
关键词(KeyWords): 教学改革;人工智能;实验教学
基金项目(Foundation): 新疆生产建设兵团本科教育教学改革研究重点项目(BTBKXM-2025-Z57)
作者(Author): 杨菲宇,杨亚宏
参考文献(References):
- [1]JALILI B, JALILI P, PASHA P, et al. The magnetohydrodynamic flow of viscous fluid and heat transfer examination between permeable disks by AGM and FEM method[J]. SSRN Electronic Journal, 2023.
- [2]DENG E F, WANG Y H, ZONG L, et al. Seismic behavior of a novel liftable connection for modular steel buildings:Experimental and numerical studies[J]. Thin-Walled Structures, 2024, 197.
- [3]HERMANN J, SCHAETZLE Z, NOE F. Deep-neural-network solution of the electronic Schr??dinger equation[J].Nature Chemistry, 2020, 12(10):891.
- [4]SALAHSHOORI I, JORABCHI M N, GHASEMI S, et al. Advancements in wastewater treatment:A computational analysis of adsorption characteristics of cationic dyes pollutants on amide functionalized-MOF nanostructure MIL-53(Al)surfaces[J]. Separation and Purification Technology,2023:319.
- [5]MANCUSO J L, MROZ A M, LE K N, et al. Electronic structure modeling of metal-organic frameworks[J]. Chemical Reviews, 2020, 120(16):8641-8715.
- [6]YU L, ZHANG T Y, LIN Y C, et al. Graphene and beyond:Recent advances in two-dimensional materials synthesis, properties, and devices[J]. ACS Nanoscience, 2022,2(6):450-485.
- [7]JORDAN M I, MITCHELL T M. Machine learning:Trends, perspectives, and prospects[J]. Science, 2015,349(6245):255-260.
- [8]LI H, TANG Z, GONG X, et al. Deep-learning electronicstructure calculation of magnetic superstructures[J]. Nature Computational Science, 2023:321-327.
- [9]李贺,段文晖,徐勇.深度学习与第一性原理计算[J].物理,2024, 53(7):442-449.LI H, DUAN W H, XU Y. Deep learning and first-principles calculation[J]. Physics, 2024, 53(7):442-449.(in Chinese)
- [10]TANG Z, LI H, LIN P, et al. A deep equivariant neural network approach for efficient hybrid density functional calculations[J]. Nature Communications, 2024, 15:8815.
- [11]DELOS RIOS M, PETAC M, ZALDIVAR B, et al. Determining the dark matter distribution in simulated galaxies with deep learning[J]. Monthly Notices of the Royal Astronomical Society, 2023, 5254:6015-6035.
- [12]CASTELVECCHI D. AI Copernic‘discovers’ that Earth orbits the Sun[J]. Nature, 2019, 575(7782):266-267.
- [13]高健,李宛豫,张陆峰,等.人工智能驱动的物理学研究——以开普勒行星运动椭圆定律为例[J].物理与工程,2024,34(5):198-203.GAO J, LI W Y, ZHANG L F, et al. Artificial intelligence driven physics research:Taking Kepler's elliptical law of planetary motion as an example[J]. Physics and Engineering, 2024, 34(5):198-203.(in Chinese)
- [14]RAISSI M, PERDIKARIS P, KARNIADAKIS G. Physics-informed neural networks:A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378:686-707.
- [15]JIN X, CAI S, LI H. NSFnets(Navier-Stokes flow nets):Physics-informed neural networks for the incompressible Navier-Stokes equations[J]. Journal of Computational Physics, 2020, 426:109951.
- [16]RAO S, MAHABAL A, RAO N, et al. Nigraha:Machine-learning-based pipeline to identify and evaluate planet candidates from TESS[J]. Monthly Notices of the Royal Astronomical Society, 2021, 502:2845.
- [17]CASTELVECCHI D. Quantum machine goes in search of the Higgs boson[J]. Nature, 2017, 530:1476-4687.
- [18]中华人民共和国教育部.教育部关于印发《高等学校人工智能创新行动计划》的通知[EB/OL]. http://www.moe.gov.cn/srcsite/A16/s7062/201804/t20180410_332722.html,2024-05-15.Ministry of Education of the People's Republic of China.Notice on the issuance of the Artificial Intelligence Innovation Action Plan for Higher Education Institutions[EB/OL].(2018-04-02)[2024-05-15]. http://www.moe.gov.cn/srcsite/A16/s7062/201804/t20180410_332722.html.(in Chinese)
- [19]国务院.国务院关于印发新一代人工智能发展规划的通知[EB/OL]. https://www.gov.cn/zhengce/content/2017-07/20/content_5211996.htm, 2024-05-15.State Council of the People's Republic of China. Notice on the issuance of the New Generation Artificial Intelligence Development Plan[EB/OL].(2017-07-08)[2024-05-15].https://www.gov.cn/zhengce/content/2017-07/20/content_5211996.htm.(in Chinese)
- [20]TENACHI W, IBATA R, DIAKOGIANNIS F I. Deep Symbolic Regression for Physics Guided by Units Constraints:Toward the Automated Discovery of Physical Laws[J]. The Astrophysical Journal, 2023, 959:1-20.
- [21]姜涛,孙艳,于华民.人工智能在大学物理教学中的应用[J].创新教育研究, 2024, 12(5):423-430.JIANG T, SUN Y, YU H M. Application of artificial intelligence in college physics teaching[J]. Innovation Education Research, 2024, 12(5):423-430.(in Chinese)
- [22]姜涛,刘兵.基于人工智能技术的智能化物理实验教学[J].创新教育研究, 2024, 12(6):540-546.JIANG T, LIU B. Intelligent physics experiment teaching based on artificial intelligence technology[J]. Innovation Education Research, 2024, 12(6):540-546.(in Chinese)
- [23]Center for Advanced Life Cycle Engineering(CALCE).Battery Data[EB/OL]. https://calce.umd.edu/batterydata, 2024-12-28.
- [24]ABRAMSON J, ADLER J, DUNGER J, et al. Accurate structure prediction of biomolecular interactions with Alpha Flod 3[J]. Nature, 2024, 630:493-500.
- [25]周诗韵,岑剡,乐永康.实验课程中激发学生探究仪器科学热情的案例[J].物理与工程,2021,31(5):124-128.ZHOU S Y, CEN Y, LE Y K. Cases of stimulating students'enthusiasm for exploring instrument science in experimental courses[J]. Physics and Engineering, 2021,31(5):124-128.(in Chinese)
- [26]李平,尹超.人工智能背景下大学生通识课程的教学探索与实践创新[J].大学化学,2024,39(10):402-407.LI P, YIN C. Teaching exploration and practice innovation of general courses for college students under the background of artificial intelligence[J]. University Chemistry,2024, 39(10):402-407.(in Chinese)