讲授力学原理统一性——以弹簧振子为例UNIFICATION OF FIVE MECHANICS PRINCIPLES BASED ON THE SPRING-MASS SYSTEM
刘建林
摘要(Abstract):
对一个系统进行力学分析可以运用不同的力学原理而得到相同结果。本文以弹簧振子为例,详细阐述了牛顿第二定律、机械能守恒定理、拉格朗日方程、哈密顿正则方程、哈密顿变分原理这五种力学原理之间的相互关系。其中牛顿第二定律是从受力角度进行分析,而机械能守恒定理、拉格朗日方程、哈密顿正则方程则是从能量角度出发。哈密顿变分原理则为更为普遍的力学原理,通过对其变分可以推导出拉格朗日方程、哈密顿正则方程以及运动微分方程。弄清楚这五种力学原理的统一性,有助于我们更加合理地选择运用它们去解决工程问题。
关键词(KeyWords): 牛顿第二定律;机械能守恒定律;拉格朗日定理;哈密顿正则方程;哈密顿原理
基金项目(Foundation): 国家自然科学基金(11672335)资助
作者(Author): 刘建林
参考文献(References):
- [1] LIU J L.The analogy study method in engineering mechanics[J].International Journal of Mechanical Engineering Education,2013,41(27):136-145.
- [2] 杜一江,沈作军.基于拉格朗日方程的航空托缆建模与仿真[J].飞行力学,2018,36(5):11-15.DU Y J,SHEN Z J.Modeling and simulation of aerial tow cable based on Lagrange equations[J].Flight Dynamics,2018,36(5):11-15.(in Chinese)
- [3] 曲安京.近现代数学史研究的一条路径——以拉格朗日与高斯的代数方程理论为例[J].科学技术哲学研究,2018,35(6):67-85.QU A J.One route of modern history of mathematics:Examples of Lagrange and Gauss algebra equations[J].Research of Philosophy of Science and Technology,2018,35(6):67-85.(in Chinese)
- [4] 易文鹏,贺志.用归纳法在质点力学中提前引出拉格朗日方程[J].科技咨询,2018,6:36-37.YI W P,HE Z.Derivation of Lagrange equation via the deduction method in the particle mechanics[J].Science and Technology Consultant,2018,6:36-37.(in Chinese)
- [5] 成实,张雅男,雷勇.力电混合系统的拉格朗日方程[J].物理与工程,2018,28(2):99-103.CHENG S,ZHANG Y N,LEI Y.Lagrange equation in the system considering mechanics and electricity[J].Physics and Engineering,2018,28(2):99-103.(in Chinese)
- [6] 毛荣宝.哈密顿正则方程应用的初探[J].沈阳工业学院学报,1994,13(1):73-76.MAO R B.Initial exploration of the application of Hamilton canonical equation[J].Journal of Shenyang Industry Institute,1994,13(1):73-76.(in Chinese)
- [7] 张光辉.基于哈密顿正则方程的超细长弹性杆数值模拟[J].科学技术与工程,2010,10(18):4466-4468.ZHANG G H.Numerical simulation of a super-slender elastic rod based on the Hamilton canonical equation[J].Science,Technology and Engineering,2010,10(18):4466-4468.(in Chinese)
- [8] 肖得恩,姚素芳.一般完整系统中的哈密顿正则方程[J].黑龙江大学自然科学学报,1995,12(2):89-92.XIAO D E,YAO S F.Hamilton canonical equation in the general holonomic system[J].Journal of Natural Science of Heilongjing University,1995,12(2):89-92.(in Chinese)
- [9] 王治国,唐立民.弹性力学中哈密顿正则方程的可分型及其有限元法[J].工程力学,1995,12(1):10-18.WANG Z G,TANG L M.Separable type and its FEM of the Hamiltoncanonical equation in elasticity[J].Engineering Mechanics,1995,12(1):10-18.(in Chinese)
- [10] KIM J,LEE H,SHIN J.Extended framework of Hamilton's principle applied to Duffing oscillation[J].Applied Mathematics and Computation,2020,367:124762.
- [11] HE J H.Hamilton's principle for dynamical elasticity[J].Applied Mathematics Letters,2017,72:65-69.