利用瑞利数理论研究贝纳德对流的产生条件USING RAYLEIGH NUMBER THEORY TO STUDY THE CONDITIONS OF BéNARD CONVECTION
钱庆余,方爱平,范富豪,段玉文,吴一粟,蒋臣威,冯俊,张修兴,王小力
摘要(Abstract):
贝纳德对流是在从下方加热的流体的平面水平层中发生的一种自然对流现象。研究此现象对于深刻认识耗散结构的物理图像以及流体在混沌系统中的运动具有重要意义。为研究其产生的条件以及物理特性,本文建立流体模型,从基本控制方程组出发,导出在固定边界条件下物理量满足的特征方程,利用重要的无量纲数——瑞利数R_a来表征是否发生对流,并推导出从静态突变至稳定对流的临界值R_(c1)=1708。在理论结果的基础上,使用COMSOL Multiphysics~?进行了仿真模拟,所得结果符合理论预言,且通过导出运动动画进一步分析了液体的运动特性。为考察温度梯度较大时对流的第二次失稳,引入洛伦兹方程组理论求解,获得了第二个临界值R_(c2)=46177。据此得到贝纳德对流的产生条件为R_(c1)
关键词(KeyWords):
瑞利-贝纳德对流;耗散结构;流体力学
基金项目(Foundation):
西安交通大学2023年基层教师教学发展组织建设项目(2302JF-01);;
2023年基层教学组织教学改革研究专项(基础课程);;
渭南师范学院教育科学研究项目(2020JYKX021)
作者(Author):
钱庆余,方爱平,范富豪,段玉文,吴一粟,蒋臣威,冯俊,张修兴,王小力
参考文献(References):
- [1] 于渌,郝柏林.边缘奇迹:相变和临界现象[M].北京:科学出版社,2005.
- [2] PETROV V,GáSPáR V,MASERE J,et al.Controlling chaos in the Belousov—Zhabotinsky reaction[J].Nature,1993,361:240-243.
- [3] PRIGOGINE I,LEFEVER R.Symmetry breaking instabilities in dissipative systems.II[J].Journal of Chemical Physics,1968,48 (4):1695-1700.
- [4] PRIGOGINE I.Dissipative structures,dynamics and entropy[J].International Journal of Quantum Chemistry,1975,9:443-456.
- [5] BéNARD H.Les tourbillons cellulaires dans une nappe liquidle[J].Rev.Gén.Sci.pures et appl.1900,11:1261-1271 & 1309-1328.
- [6] RAYLEIGH L,LIX.On convection currents in a horizontal layer of fluid,when the higher temperature is on the under side[J].The London,Edinburgh,and Dublin Philosophical Magazine and Journal of Science,1916,32(192):529-546.
- [7] JEFFREYS H.The stability of a layer of fluid heated from below[J].Phil.Mag.1926,2(7):833;Some cases of instability in fluid motion[J].Proceedings of the Royal Society of London A,1928,118:195.
- [8] CHANDRASEKHAR S.Hydrodynamic and Hydromagnetic Stability[M].Oxford:Clarendon Press,1961.
- [9] LIU J,AHLERS G.Rayleigh-Bénard convection in binary-gas mixtures:Thermophysical properties and the onset of convection[J].Physical Review E,1997,55(6):6950.
- [10] SILVESTON P L.W?rmedurchgang in waagerechten Flüssigkeitsschichten[J].Forschung auf dem Gebiet des Ingenieurwesens A,1958,24:29-32.
- [11] MALKUS W V R,VERONIS G.Finite amplitude cellular convection[J].Journal of Fluid Mechanics,1958,4(3):225-260.
- [12] BAJAJ K M S,MUKOLOBWIEZ N,CURRIER N,et al.Wave number selection and large-scale-flow effects due to a radial ramp of the spacing in Rayleigh-Bénard convection[J].Physical Review Letters,1999,83(25):5282.
- [13] MALRAISON B,ATTEN P,BERGé P,et al.Dimension d'attracteurs étranges:une détermination expérimentale en régime chaotique de deux systèmes convectifs[J].Comptes-rendus des séances de l'Académie des sciences.Série 2,Mécanique-physique,chimie,sciences de l'univers,sciences de la terre,1983,297(3):209-214.
- [14] JENSEN M H,KADANOFF L P,LIBCHABER A,et al.Global universality at the onset of chaos:results of a forced Rayleigh-Bénard experiment[J].Physical Review Letters,1985,55(25):2798-2801.
- [15] LORENZ E N.Deterministic nonperiodic flow[J].Journal of Atmospheric Sciences,1963,20(2):130-141.
- [16] BOUSSINESQ J.Théorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal,en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond[J].Journal de mathématiques pures et appliquées,1872,17:55-108.
- [17] 李睿航,方爱平,陈子龙,等.基于耗散结构的贝纳德对流研究[J].大学物理,2020,39(12):75-80.LI R H,FANG A P,CHEN Z L,et al.Bernard convection prediction based on dissipative structure[J].College Physics,2020,39(12):75-80.(in Chinese)
- [18] MANNEVILLE P.Rayleigh-Bénard convection:Thirty years of experimental,theoretical,and modeling work[M].New York:Springer New York,2006.
- [19] BUSSE F H.Transition to turbulence in Rayleigh-Beénard convection[J].Hydrodynamic instabilities and the transition to turbulence,2005:97-137.
- [20] DAVAILLE A,LIMARE A.Laboratory studies of mantle convection[J].Treatise on Geophysics 2007,7:89-165.
- [21] 陆同兴.非线性物理概论[M].合肥:中国科学技术大学出版社,2002.
- [22] SHMAKOV S L.A universal method of solving quartic equations[J].Int.J.Pure Appl.Math,2011,71(2):251-259.
- [23] CHAR M I,CHIANG K.Stability analysis of Benard-Marangoni convection in fluids with internal heat generation[J].Journal of Physics D,1994,27:748-755.