二维、三维有限深球方势阱中的束缚态BOUND STATES IN 2D AND 3D FINITE DEEP SPHERICAL SQUARE POTENTIAL WELLS
刘乐平,孙嘉泽,李喜彬,王彦
摘要(Abstract):
通过求解二维、三维有限深球对称中心方势阱中的薛定谔方程(球对称同样包含二维连续旋转对称的含义),得到离散能级的本征方程以及束缚态能级分布,并给出了任意束缚态波函数的解析解。能级的本征方程以及束缚态波函数均表现为(球)贝塞尔函数的形式,对于三维的情况,当参量α~2=2μa~2V_0/?~2>π~2/_4时存在束缚态解;而对于二维的情况,当2μa~2V_0/?~2>0.1993时存在束缚态。利用数值方法分析了不同量子态下概率密度分布的特点,发现不论是三维还是二维情况,阱内的概率密度分布的极大值数量正好对应量子数n,且n越大或α越小,在阱外发现粒子的概率也就越大。此外,角动量量子数l或m则可以表征粒子偏离中心或者均匀分布的程度。
关键词(KeyWords): 中心对称势阱;薛定谔方程;束缚态解
基金项目(Foundation): 国家自然科学基金(12275143);; 内蒙古自治区自然科学基金(2021LHBS01001,2020BS01013);; 内蒙古自治区优秀人才支持项目(5909002107);; 内蒙古师范大学教学研究课题(2023sxjxzx23919,2023sfzx23908)
作者(Author): 刘乐平,孙嘉泽,李喜彬,王彦
参考文献(References):
- [1] GOFF J E,COLLADAY D C.Metastable states in a 1D quantum system[J].American Journal of Physics,2023,91(12):993-998.
- [2] COLLADAY D C,GOFF J E.Multiple approaches to incorporating scattering states in non-degenerate perturbation theory[J].American Journal of Physics,2020,88(9):711-722.
- [3] 顾卓成,刘昊迪,衣学喜.动边界一维无限深势阱中粒子的演化[J].物理与工程,2023,33(1):27-34.GU Z C,LlU H D,YI X X,Time evolution of a particle in a one-dimensional infinite square well potential with moving boundary[J].Physics and Engineering,2023,33(1):27-34.(in Chinese)
- [4] 陈凤翔,曹功辉,汪礼胜.一维有限深势阱的转移矩阵法求解[J].物理与工程,2020,30(2):37-43,48.CHEN F X,CAO G H,WANH L S,Solving the one-dimensional finite potential wells by transfer matrix method[J].Physics and Engineering,2019,30(2):77-43,48.(in Chinese)
- [5] 李海凤,陈康康,王欣茂.一维三方势垒量子隧穿特性的研究[J].大学物理,2024,43(2):1-4,32.LI H F,CHEN K K,WANG X M.Study on quantum tunneling of one-dimensional triple potential square barriers[J].College Physics,2024,43(2):1-4,32.(in Chinese)
- [6] 杨红卫,孟珊珊,高冉冉.基于GUI的三维无限深势阱可视化研究[J].物理与工程,2017,27(6):81-85.WANG H W,MENG S S,GAO R R.Visualization research of three-dimensional infinite potential well based on GUI[J].Physics and Engineering,2017,27(6):81-85.(in Chinese)
- [7] 岳家兴.量子围栏中的表面电子态[J].大学物理,2006(6):57-60.YUE J X.The states of surface electron in the quantum corral[J].College Physics,2006(6):57-60.(in Chinese)
- [8] 王玉凤,付柯,王跃超,等.二维、三维无限深环形势阱中波函数的求解与可视化[J].大学物理,2023,42(1):55-59,64.WANG Y F,FU K,WANG Y C.Solution and visualization of wave functions in two-dimensional and three-dimensional infinite deep annular potential wells[J].College Physics,2023,42(1):55-59,64.(in Chinese)
- [9] 张永德.量子力学(第五版)[M].北京:科学出版社,2021:332.
- [10] 张永德.量子力学——物理学大题典(6)[M].北京:科学出版社,2007:174.
- [11] 王怀玉.基于狄拉克方程推导求解一维势垒问题[J].华北科技学院学报,2022,19(1):97-107.WANG H Y.Resolving problems of one-dimensional potential barriers based on Dirac equation[J].Journal of North China Institute of Science and Technology,2022,19(1):97-107.(in Chinese)
- [12] OLVER F W,LOZIER D W,BOISVERT R F,et al.NIST Handbook of Mathematical Functions[M].Cambridge:Cambridge University Press,2010.
- [13] GRADSHTEYN I S,RYZHIK I M.Table of Integrals,Series and Products (Eighth Edition)[M].Singapore:Academic Press,2018.