非线性动力学在磁约束核聚变约束模式转换中的应用APPLICATION OF NONLINEAR DYNAMICS TO L-H MODE TRANSITION IN MAGNETIC CONFINEMENT FUSION
艾媛媛,朱浩
摘要(Abstract):
非线性动力学在诸如双摆和振荡电路等本科物理教学中扮演着积极的角色。雅可比矩阵作为非线性动力学中的重要概念,常被用来分析不动点的性质。本文中我们先推导了一个二维系统中雅可比矩阵的具体形式,并将其应用到磁约束核聚变约束模式转换模型,最后延伸求解出ZCD模型中各不动点的雅可比矩阵本征值。我们随后调整了模型中的外界加热功率,并使用雅可比矩阵观察模型中非线性动力学性质的变化。经研究发现,外界加热功率的改变会使得ZCD模型极限环的大小发生变化,即功率越大极限环半径越大。极限环半径的扩大导致环与鞍点相交为一个同宿轨,诱使系统产生同宿分岔。
关键词(KeyWords): 非线性动力学;雅可比矩阵;约束模式转换模型;同宿分岔
基金项目(Foundation): 北京市自然科学基金资助项目(1194020,2232045);; 北京市教委科技计划一般项目(KM201910005001);; 国家重点研发计划(2018YFB0703500)
作者(Author): 艾媛媛,朱浩
参考文献(References):
- [1] 刘锦,张孟.弹簧车摆的动力学模拟研究[J].物理与工程,2021,(5):93-97.LIU J,ZHANG M.Simulation study on the dynamics of spring car pendulum[J].Physics and Engineering,2021,31(5):93-97.(in Chinese)
- [2] 李万祥,何玮,唐恭佩.一类复摆系统的非线性动力学研究[J].华中科技大学学报:自然科学版,2007,(5):27-30.LI W X,HE W,TANG G P.Research on nonlinear dynamics of a double pendulum system[J].Journal of Huazhong University of Science and Technology (Nature sci ed),2007,35(5):27-30.(in Chinese)
- [3] 张连芳,傅敏学,刘滢滢,等.混沌实验教学之路[J].物理与工程,2013,(1):21-24.ZHANG L F,FU M X,LIU Y Y,et al.The way of education for chaos experiment[J].Physics and Engineering,2013,23(1):21-24.(in Chinese)
- [4] 李明达,董乔南,杨亚利,等.利用非线性动力学系统研究混沌现象[J].物理与工程,2019,(6):77-84.LI M,DONG Q N,YANG Y L,et al.Study of chaos with nonlinear dynamical system[J].Physics and Engineering,2019,29(6):77-84.(in Chinese)
- [5] ZHU H,CHAPMAN S C,DENDY R O.Robustness of predator-prey models for confinement regime transitions in fusion plasmas[J].Physics of Plasmas,2013,20(4):042302.
- [6] STROGATZ S H.非线性动力学与混沌[M].孙梅,汪小帆等,译.北京:机械工业出版社:2016.
- [7] 周道其.科学家揭开惠更斯复摆钟之谜[J].现代物理知识,2002,14(5):1.ZHOU D Q.Scientist shave solved the mystery ofHuygens' compound pendulum clock[J].Review of World Invention,2002,14(5):1.(in Chinese)
- [8] 陈明晖,邓明立.庞加莱微分方程定性理论研究初探——兼纪念庞加莱诞辰150周年[J].科学.2004,(1):29-31.CHEN M H,DENG M L.A Preliminary study on the Qualitative Theory of Poincaré's differential Equation—Also commemorating the 150th anniversary of Poincaré's birth[J].Science,2004,56(1):29-31.(in Chinese)
- [9] LORENZ E N.Deterministic nonperiodic flow[J].Journal of the Atmospheric Sciences,1963,20(2):130-141.
- [10] 叶美盈.一种非线性动力学系统数值模拟的新方法[J].云南师范大学学报:自然科学版,2000,(2):33-36.YE M Y.A new approach to the numerical simulation of nonlinear dynamics[J].Journal of Yunan Normal University (Natural sci ed),2000,20(2):33-36.(in Chinese)
- [11] MCCRACKEN G H,STOTT P.宇宙能源——聚变[M].核工业西南物理研究院翻译组.北京:原子能出版社,2008.
- [12] LI S,JIANG H,REN Z,et al.Optimal tracking for a divergent-type parabolic PDE system in current profile control[C]//ZHANG X G.Abstract and Applied Analysis.New York:Hindawi Publishing Corporation,2014:1-8.
- [13] 刘爱红,佘守宪.轴对称缓变磁场中的等离子体与磁约束原理[J].物理与工程,2002,(5):14-17.LIU A H,YU SH X.Plasma in slow-varying magnetic field with axial-symmetry and principle of magnetic confinement[J].Physics and Engineering,2002,12(5):14-17.(in Chinese)
- [14] WAGNER F.Regime of Improved Confinement and High Beta in Neutral-Beam-Heated Divertor Discharges of the ASDEX Tokamak[J].Physical Review Letters,1982,49(19):1408-1412.
- [15] BURRELL K H.Effects of E × B velocity shear and magnetic shear on turbulence and transport in magnetic confinement devices[J].Physics of Plasmas,1997,4(5):1499-1518.
- [16] MALKOV M A,DIAMOND P H.Weak hysteresis in a simplified model of the LH transition[J].Physics of Plasmas,2009,16(1):012504.