采用一维无穷电阻网络的物理模型求解Fejer积分SOLVING FEJER INTEGRAL BY ONE-DIMENSIONAL INFINITE RESISTANCE NETWORK MODEL
李海鹏,沈晓鹏
摘要(Abstract):
高等数学和大学物理是高校理工类学生非常重要的公共基础课.在传统教学中高等数学通常作为工具来帮助解决大学物理问题,而运用大学物理学知识去解决高等数学问题却很少关注.探讨如何把两者的教学结合起来,对培养学生创新思维具有十分重要的意义.本文基于一维无穷电阻网的物理模型,推导出了一维无穷电阻网络等效电阻的解析解,并给出了求解Fejer积分的一种新的物理方法,体现了数理结合的思想.
关键词(KeyWords): 一维无穷电阻网络;等效电组;Fejer积分;数理结合
基金项目(Foundation): 国家自然科学基金项目(批准号:61372048,11347123);; 中国矿业大学课程建设与教学改革项目(批准号:2014QN30,2014YB39)
作者(Author): 李海鹏,沈晓鹏
参考文献(References):
- [1]夏英齐,钱树高,赖树云.用物理方法求解数学问题[J].云南教育学院学报,1999,15(4):1-5.
- [2]谷峰,刘丽梅.Ramler不等式的物理证明[J].高师理科学刊,1998,18(2):9-11.
- [3]刘丽梅.用物理方法解决数学问题的再探讨[J].齐齐哈尔大学学报,2003,19(1):90-91.
- [4]孟凡友,王冰,金俊.微积分中Fejer核的性质及应用[J].高等数学研究,2013,16(3):9-12.
- [5]王晓姝,姜亚倩.对Fejer积分的推广[J].大学数学,2013,29(5):121-123.
- [6]谭志中,方靖淮.平面无穷矩形网络的等效电阻公式及其应用[J].南通大学学报(自然科学版),2012,11(3):86-94.
- [7]石长春,李翌,张霖涛,等.平面无穷网络的等效电阻(上)[J].大学物理,1995,14(12):42.
- [8]石长春,李翌,张霖涛,等.平面无穷网络的等效电阻(续)[J].大学物理,1996,15(1):39-41.