超导量子比特谱SUPERCONDUCTING QUBIT SPECTRUM
宿非凡,杨钊华
摘要(Abstract):
时间晶体的首次构造成功使人们意识到超导量子计算以其拥有的诸多优点在物理学前沿问题的研究应用上走在了其他量子计算方案的前面。作为"物理前沿介绍——超导量子计算"系列的第三篇,本文系统阐述多种超导量子比特的基本组成以及其物理特征,给出一个超导量子比特的"谱"并对新近发现的研究结论和新近提出的设计方案进行讨论,最后对超导量子比特全新设计进行展望并提出一种3D nSQUID设计设想。本文旨在帮助广大高校物理专业教师、高年级本科生、研究生以及对超导量子计算感兴趣的理工科背景读者系统了解不同的超导量子比特设计与特性,同时也有益于专业从事超导量子计算的专业科研人员开阔超导量子比特的设计思路。
关键词(KeyWords): 超导量子干涉仪;超导量子计算;超导量子比特;约瑟夫森结
基金项目(Foundation): 国家自然科学基金(11674380)资助
作者(Author): 宿非凡,杨钊华
参考文献(References):
- [1] ARUTE F,ARYA K,MARTINIS J M,et al.Quantum supremacy using a programmable superconducting processor[J].Nature,2019,574:505-510.
- [2] XIAO M,IPPOLITI M,QUINTANA C,et al.Observation of Time-Crystalline Eigenstate Order on a Quantum Processor[J].arXiv:2107.13571v2 [quant-ph],2021.
- [3] 宿非凡,杨钊华.约瑟夫森效应与超导量子电路的基本物理原理[J].物理与工程,2021,31(5):网络首发.SU F F,YANG Z H.Josephson effect and the basic physical principles of superconducting quantum circuits[J].Physics and Engineering,2021,31(5):first online.(in Chinese)
- [4] 宿非凡.超导电路的量子化方法[J].物理与工程,2021,31(3):13-15,21.SU F F.The quantization method of superconducting circuit[J].Physics and Engineering,2021,31(3):13-15,21.(in Chinese)
- [5] AHARONOV Y,BHOM D.Significance of electromagnetic potentials in quantum theory[J].Physical Review,1959,115:485-491.
- [6] OSAKABE N,MATSUDA T,TONOMURA A.Experimental confirmation of Aharonov-Bohm effect using a toroidal magnetic field confined by a superconductor[J].Phy.Rew.A,1986,34:815-822.
- [7] NAKAMURA Y,PASKIN Y A,TSAI J S.Coherent control of macroscopic quantum states in a single-Cooper-pair box[J].Nature,1999,398:786-788.
- [8] RISTè D,SILVA M P,RYAN C A,et al.Demonstration of quantum advantage in machine learning[J].npj Quant.Info.,2017,3:16.
- [9] BLADH K,DUTY T,GUNNARSSON D,et al.The single Cooper-pair box as a charge qubit[J].New Journal of Physics,2005,7:180.
- [10] MOOIJ J E,ORLANDO T P,LEVITOV L,et al.Josephson persistent-current qubit[J].Science,1999,285:1036-1039.
- [11] FEDOROV K G,SHCHERBAKOVA A V,SCH?FER R,et al.Josephson vortex coupled to a flux qubit[J].Appl.Phys.Lett.,2013,102:132602.
- [12] ORLANDO T P,MOOIJ J E,TIAN L,et al.Superconducting persistent-current qubit[J].Phy.Rew.B,1999,60:15398-15413.
- [13] NEELEY M,ANSMANN M,BIALCZAK R C,et al.Transformed dissipation in superconducting quantum circuits[J].Phy.Rew.B,2008,77:180508.
- [14] SU F F,LIU W Y,ZHAO S P,et al.Superconducting phase qubits with shadow-evaporated Josephson junctions[J].Chin.Phys.B,2017,26:060308.
- [15] KOCH J,TERRI M Y,GAMBETTA J,et al.Charge-insensitive qubit design derived from the Cooper pair box[J].Phy.Rew.A,2007,76:042319.
- [16] 宿非凡,杨钊华,范桁等.超导量子比特[J].大学物理,2021,40:7-14.
- [17] BARENDS R,KELLY J,MEGRANT A,et al.Coherent Josephson Qubit Suitable for Scalable Quantum Integrated Circuits[J].2013 Phys.Rev.Lett.111 080502.
- [18] SEMENOV V K,DANILOV G V,AVERIN D V.Negative-inductance squid as the basic element of reversible josephson-junction circuits[J].IEEE Transactions on Appiled Superconductivity,2003,13:938-943.
- [19] DENG Q,AVERIN D V.Nsquid arrays as conveyers of quantum information[J].Journal of Experimental and Theoretical Physics,2015,119:1152-1162.
- [20] LI H,LIU J S,ZHANG Y S,et al.Principle and experimental investigation of current-driven negative-inductance superconducting quantum interference device[J].Supercond.Sci.Technol,2017,30:035012.
- [21] LIU W Y,SU F F,XU H K,et al.Negative inductance SQUID qubit operating in a quantum regime Supercond[J].Supercond.Sci.Technol,2018,31:045003.
- [22] YAN F,GUSTAVSSON S,OLIVER W D,et al.The flux qubit revisited to enhance coherence and reproducibility[J].Nat.Commun.,2016,7:12964.
- [23] MANUCHARYAN V E,KOCH J,GLAZMAN L I,et al.Fluxonium:Single Cooper-Pair Circuit Free of Charge Offsets[J].Science,2009,326:113-116.
- [24] CHEN Y,NEILL C,ROUSHAN P,et al.Qubit Architecture with High Coherence and Fast Tunable Coupling[J].Phys.Rev.Lett.,2014,113:220502.
- [25] RAHAMIM J,BEHRLE T,PETERER M J,et al.Double-sided coaxial circuit QED with out-of-plane wiring[J].App.Phy.Lett.,2017,110:222602.
- [26] LIU F M,CHEN M C,PAN J W,et al.Quantum Design for Advanced Qubits[J].arXiv:2109.00994[quant-ph],2021.
- [27] HATRIDGE M,VIJAY R,SCHLICHTER D H,et al.Dispersive magnetometry with a quantum limited SQUID parametric amplifier[J].Phys.Rev.B,2011,83:134501.
- [28] MUTUS J Y,WHITE T C,JEFFREY E,et al.Design and characterization of a lumped element single-ended superconducting microwave parametric amplifier with on-chip flux bias line[J].Appl.Phys.Lett.,2013,103:122602.
- [29] SU F F,WANG Z T,XU H K,et al.Nb-based Josephson parametric amplifier for superconducting qubit measurement[J].Chin.Phys.B,2019,28:110303.
- [30] ROSENBERG D,KIM D,OLIVER W D,3D integrated superconducting qubits[J].NPJ Quantum Information,2017,3:42.
- [31] WU Y L,BAO W S,PAN J W et.al arXiv:2106.14734v1 [quant-ph],2021.
- [32] BRETHEAU L,WANG J J,PISONI R,et al.Tunnelling spectroscopy of Andreev states in graphene[J].Nat.Phys.,2017,13:756-760.
- [33] BEN SHALOM M,ZHU M J,FAL'KO V I,et al.Quantum oscillations of the critical current and high-feld superconducting proximity in ballistic graphene[J].Nat.Phys.,2016,12:318-322.
- [34] WANG J I,LEGRAIN D R,BRETHEAU L,et al.Coherent control of a hybrid superconducting circuit made with graphene-based van der Waals heterostructures[J].Nature Nanotechnology,2019,14:120-125.
- [35] WU X X,LI X,ZHANG R Y,et al.Deterministic scheme for two-dimensional Type-II Dirac points and experimental realization in acoustics[J].Phys.Rev.Lett.,2021,124:075501.
- [36] KRANTZ P,KJAERGAARD M,OLIVER W D,et al.A quantum engineer's guide to superconducting qubits[J].Appl.Phys.Rev.,2019,6:021318.