指南车广义运动方程的创建PERFORMS THE GENERAL MOTION EQUATIONS OF THE SOUTH POINTING CHARIOT
邓崇林
摘要(Abstract):
在平面上行进的指南车遥指向南,本文的关注点是如果将其推广至曲面上时,将有哪些运动规律。本研究承接前人给出微型指南车是一台能遂行向量平行移动之机器的功能属性的观点,将此做为定量基础,深入探索其运动现象,从而创建微型指南车之广义运动方程,能够描述其指向器在曲面上的随行偏转运动与原地补转运动,以及一般指南车在平面上的自由运动等物理图像。当作用曲面退化成平面时,其广义运动方程会简化成自由平移方程,正是这个运动规律,使得在平面上的指南车指向器遵循着方向上的守恒律。相较于广义运动方程的微分形式,其另有对封闭路径积分形式的相位方程。
关键词(KeyWords): 平行移动;向量平移;指南车;傅科摆;高斯-博内公式;几何相位;测地曲率
基金项目(Foundation):
作者(Author): 邓崇林
参考文献(References):
- [1]FOSTER J,NIGHTINGALE J D.A short course in general relativity[M].3rd Ed.New York:Springer,2005,Appendex B:The Chinese connection
- [2]SANTANDER M.The Chinese south-seeking chariot:Asimple mechanical device for visualizing curvature and parallel transport[J].Am.J.Phys.,1992,60(9):782-787.
- [3]邓崇林,萧先雄,指南车在物理学中几何相位的应用[J],物理与工程,2014,24(S2):1-8.TENG C L,HSIAO S S.Chinese south pointing chariot and geometrical phases in physics[J].Physics and Engineering,2014,24(S2):1-8.(in Chinese)
- [4]邓崇林,指南车控制理论的创建[J],物理与工程,2019,优先出版.TENG C L.Theorizing the control system of south-pointing chariots[J].Physics and Engineering,2019,Online first.
- [5]NICHOLAS M P,Maekawa T.Shape interrogation for computer aided design and manufacturing[M].New York:Springer,2002,266-268.
- [6]PAUL A B.Lectures on the differential geometry of curves and surfaces[M].Cluj-Napoca,Romania:Napoca Press,2005,177-179.
- [7]PRASUN K N.Textbook of tensor calculus and differential geometry[M].New Delhi:PHI Learning Pvt.Ltd.,2011,364,369
- [8]SLOBODYAN Y S.MICHIEL H.Encyclopedia of mathematics[M].Geodesic curvature,Eds.Volume 4,New York:Springer,1989:246.
- [9]ERWIN K.Differential geometry[M].New York:Dover Publications,1991,154-156.
- [10]ALFRED G,ABBENA E,SALAMON S.Modern differential geometry of curves and surfaces with mathematica[M].3rd Ed.,Chapman&Hall/CRC,2006,P.539.
- [11]THEODORE F.The geometry of physics:An introduction[M].2nd Ed.New York:Cambridge University Press,2006,237.
- [12]PRESSLEY A.Elementary differential geometry[M].2nd Ed.New York:Springer,2010,362-363.
- [13]陈省身.陈省身文选[M].中国台湾:联经出版事业公司,1990:238.
- [14]DO CARMO M P.Differential geometry of curves and surfaces[M].NJ:Prentice-Hall,1976,252.
- [15]MILLMAN R,PARKER G.Elements of differential geometry[M].NJ:Prentice-Hall,1977:25.
- [16]HART J B,MILLER R E,MILLS R L.A simple geometrical model for visualizing the motion of a Foucault pendulum[J].Am.J.Phys.,1987,55(1):67-70.
- [17]OPREA J.Geometry and the Foucault pendulum[J].The American Mathematical Monthly,1995,102(6):515-522.
- [18]VON BERGMANN J,VON BERGMANN H C.Foucault pendulum through basic geometry[J].Am.J.Phys,2007,75(10):888-892.
- [19]BOERSMA S.A mathematician's look at foucault's pendulum[J].Math Horizons,2005,12:19-21,32.
- [20]SOMMERIA J.Foucault and the rotation of the earth[J].C.R.Physique,2017,18:520-525.
- [21]由邓崇林、萧先雄用指南车给出二维曲面高斯-博内定理的操作式证明之四[Z/OL].(2018-06-23[2018-08-23].https://www.youtube.com/watch?v=EfpcUaBbulY
- [22]FELIX B.Heisenberg and the early days of quantum mechanics[J].Physics Today,1976,29(12):23-27.
- [23]NEEDHAM J.Science and civilization in China:Physics and physical technology.Mechanical engineering[M].Volume 4,PartⅡ,London:Cambridge University Press,1965:286-303.
- [24]单位向量在单位球面北纬30度纬圆向东平行移动一周之相位变化[Z/OL].(2018-08-12)[2018-09-11].http://www.glowscript.org/#/user/coolteng/folder/Public/pro gram/paralleltransportonsphericalsurface