广义相对论与连续介质力学在几何学中基于张量的统一及其应用UNIFICATION OF GENERAL RELATIVITY AND CONTINUUM MECHANICS BASED ON TENSOR IN GEOMETRIC AND ITS APPLICATIONS
汪志义,张弛,赵福垚
摘要(Abstract):
以张量作为工具,广义相对论与连续介质力学可以实现几何意义上的统一。二者的差别在于前者统一的是时空与物质,后者针对的是连续介质模型并需要考虑物性。这种统一具有数学上的形式,但其本质是物理的。这种统一可应用于引力理论和工程力学中的非协调变形等问题,对相关的教学和科研工作有参考价值。
关键词(KeyWords): 广义相对论;连续介质力学;张量;几何;统一
基金项目(Foundation): 长治医学院博士科研启动基金(BS202026,BS202043)
作者(Author): 汪志义,张弛,赵福垚
参考文献(References):
- [1] 陈起辉,黄飞杰,傅永平,等.二维曲面理论引入数学物理方法的探讨[J].物理与工程,2021,31(2):20-30.CHEN Q H,HUANG F J,FU Y P,et al.The discussion on introducing 2-dimensional surface theory into the methods of mathematical physics[J].Physics and Engineering 2021,31(2):20-30.(in Chinese)
- [2] 路峻岭,顾晨,秦联华等.关于流体力学黏滞及伯努利方程演示实验[J].物理与工程,2020,30(1):80-86,92.LU J L,GU C,QIN L H,et al.Demonstration experiments on fluid dynamics viscosity and Bernoulli equation[J].Physics and Engineering,2020,30(1):80-86,92.(in Chinese)
- [3] 赵福垚.Neumann边界条件的半空间调和方程基于广义函数的求解 [J].力学与实践,2021,43(2):302-305.ZHAO F Y.Solution of half space harmonic equation with Neumann boundary condition based on the generalized function[J].Mechanics in Engineering,2021,43(2):302-305.(in Chinese)
- [4] 是长春.相对论流体力学[M].北京:科学出版社,1992.
- [5] 朗道 Л.Д.,栗弗席兹 E M.理论物理学教程第二卷场论[M].8版.鲁欣,任朗,袁炳南,译.邹振隆,校.北京:高等教育出版社,2012.
- [6] 谢多夫.连续介质力学(第一卷)[M].6版.李植,译.北京:高等教育出版社.2007.
- [7] 朗道 Л Д,栗弗席兹 E M.理论物理学教程第七卷弹性理论[M].5版.武际可,刘寄星,译.北京:高等教育出版社,2011.
- [8] 赵福垚.对空间与平面力系平衡条件的认识[C].第16届全国结构工程学术会议.中国山西太原,2007:413-415.
- [9] 赵福垚,李颖.牛顿第一定律表述形式浅析[C].全国力学史与方法论学术研讨会.中国山东烟台,2009:78-85.
- [10] 赵福垚,宋二祥.有限一维弹性波动问题的公理化求解及其在自由场中的应用[J].工程力学,2015,32(4):47-51.ZHAO F Y,SONG E X.An axiomatic solution for one dimensional finite space elasto-dynamic problem and its application to free field[J].Engineering Mechanics,2015,32(4):47-51.(in Chinese)
- [11] ZHAO F Y,SONG E X,YANG J.Stress analysis of rotary vibration of rigid friction pile and stress general solution of central symmetry plane elastic problem[J].Mathematical Problems in Engineering,2015.
- [12] ZHAO F Y,SONG E X.A note about cylindrical wave equation[J].Soil Dynamics and Earthquake Engineering,2018,115(14):933-934.
- [13] ZHAO F Y,XIANG P.Analysis of rotary vibration of rigid friction pipe pile in unsaturated soil[J].Mathematical Problems in Engineering,2020.
- [14] SCHOLZ E.E.Cartan's attempt at bridge-building between Einstein and the Cosserats-or how translational curvature became to be known as torsion[J].The European Physical Journal H,2019,44(1):47-75.
- [15] 武际可.力学的几何化[J].力学与实践,2017,39(4):323-332.WU J K.Geometrization of mechainics[J].Mechanics in Engineering,2017,39(4):323-332.(in Chinese)
- [16] 吴望一.流体力学(上册)[M].北京:北京大学出版社,1982.
- [17] HEHL F W.Gauge Theory of Gravity and Spacetime[M].Einstein Studies,2017,13,145-169.
- [18] BLAGOJEVIC M,HEHLF W.Gauge theories of gravitation:A reader with commentaries[M].Imperial College Press,2013.
- [19] 郭仲衡,梁浩云.变形体非协调理论[M].重庆:重庆出版社,1989.
- [20] KLEINERT H.Gravity as a theory of defects in a crystal with only second gradient elasticity[J].Annalen der Physik,1987,499(2):117-119.
- [21] KATANAEV M O.Geometric theory of defects[J].Physics-Uspekhi.2005,48,675-701;Uspekhi Fizicheskikh Nauk 2005,175,705-733.
- [22] LAZAR M,HEHL F W.Cartan's spiral staircase in physics and,in particular,in the gauge theory of dislocations[J].Foundations of Physics,2010,40,1298-1325.