核聚变约束模式转换模型中的倍周期分岔与混沌行为及对应的功率谱分析PERIOD-DOUBLING ROUTE TO CHAOS AND THE POWER SPECTRUM ANALYSIS IN THE CONFINEMENT MODE TRANSITION MODELS IN NUCLEAR FUSION
张博雅,朱浩
摘要(Abstract):
非线性动力学在本科物理教学中扮演着十分重要的角色,功率谱作为一个重要的频域分析方法,常被用来分析和预测系统的非线性动力学行为。本文先使用傅里叶变换推导出功率谱的具体形式,然后将其应用到核聚变约束模式转换的重要模型——ZCD模型中,并观察其系统的动力学行为。我们通过调整ZCD模型中加热功率的振幅,并绘制相应的功率谱图和相图,来观察和对比不同参数下模型的非线性动力学性质的变化。研究发现,随着加热功率振幅的增大,系统中的湍流强度通过倍周期分岔的路径进入了混沌,这时的系统行为变得不可预测。在这个转变过程中,系统的倍周期分岔点位置与费根鲍姆常数所描述的规律相吻合。
关键词(KeyWords): 非线性动力学;核聚变约束模式转换模型;倍周期分岔;混沌;功率谱
基金项目(Foundation): 北京市自然科学基金(2232045);; 北京市教委科技计划(KM202210005010)~~
作者(Author): 张博雅,朱浩
参考文献(References):
- [1] 刘玉颖,金仲辉,李顺烨.谈谈混沌[J].物理与工程,2018,28(5):59-62.LIU Y Y,JIN Z H,LI S Y.A discussion on chaos[J].Physics and Engineering,2018,28(5):59-62.(in Chinese)
- [2] 李明达,董乔南,杨亚利,等.利用非线性动力学系统研究混沌现象[J].物理与工程,2019,29(6):77-84,88.LI M D,DONG Q N,YANG Y L,et al.Study of chaotic phenomena using nonlinear dynamical systems[J].Physics and Engineering,2019,29(6):77-84,88.(in Chinese)
- [3] 张连芳,傅敏学,刘滢滢,等.混沌实验教学之路[J].物理与工程,2013,23(1):21-24.ZHANG L F,FU M X,LIU Y Y,et al.The path of chaos experimental teaching[J].Physics and Engineering,2013,23(1):21-24.(in Chinese)
- [4] 李明达,袁哲诚,罗锻斌.一种非线性动力学系统混沌现象的深入研究[J].大学物理,2020,39(1):33-37,60.LI M D,YUAN Z C,LUO D B.An in-depth study of chaotic phenomena in a nonlinear dynamical system[J].University Physics,2020,39(1):33-37,60.(in Chinese)
- [5] STROGATZ S H.非线性动力学与混沌[M].孙梅,汪小帆,译.北京:机械工业出版社,2016.STROGATZ S H.Nonlinear dynamics and chaos[M].SUN M,WANG X F,trans.Beijing:Machinery Industry Press,2016.(in Chinese)
- [6] 李娟,高洋.庞加莱定性思想的决定论意涵[J].自然辩证法研究,2023,39(1):116-122.LI J,GAO Y.The deterministic implications of Poincaré's qualitative thought[J].Studies in the Dialectics of Nature,2023,39(1):116-122.(in Chinese)
- [7] LORENZ E N.DFTerministic nonperiodic flow[J].Journal of Atmospheric Sciences,1963,20(2):130-141.
- [8] FEIGENBAUM M J.Quantitative universality for a class of nonlinear transformations[J].Journal of Statistical Physics,1978,19(1):25-52.
- [9] LAWSON J D.Some criteria for a power producing thermonuclear reactor[J].Proceedings of the Physical Society.Section B,1957,70(1):6.
- [10] LI S,JIANG H,REN Z,et al.Optimal tracking for a divergent-type parabolic PDE system in current profile control[C]//Abstract and Applied Analysis.Hindawi,2014.
- [11] WAGNER F,BECKER G,BEHRINGER K,et al.Regime of improved confinement and high beta in neutral-beam-heated divertor discharges of the ASDEX tokamak[J].Physical Review Letters,1982,49(19):1408.
- [12] BURRELL K H.Effects of E×B velocity shear and magnetic shear on turbulence and transport in magnetic confinement devices[J].Physics of Plasmas,1997,4(5):1499-1518.
- [13] MALKOV M A,DIAMOND P H.Weak hysteresis in a simplified model of the LH transition[J].Physics of Plasmas,2009,16(1):012504.
- [14] ZHU H,CHAPMAN S C,DENDY R O.Robustness of predator-prey models for confinement regime transitions in fusion plasmas[J].Physics of Plasmas,2013,20(4):042302.
- [15] ZHU H,CHAPMAN S C,DENDY R O,et al.Transitions to improved confinement regimes induced by changes in heating in zero-dimensional models for tokamak plasmas[J].Physics of Plasmas,2014,21(6):062307.