基于Hirota方法探求非零边界条件下MNLS/DNLS方程的孤子解SOLITON SOLUTION OF MNLS/DNLS EQUATION WITH NONVANISHING BOUNDARY CONDITION BASED ON HIROTA METHOD
周国全,雒润嘉,齐蓥
摘要(Abstract):
Hirota双线性导数变换处理非线性偏微分方程,是一种比反散射变换更为方便的直接方法。本文展示了Hirota双线性导数变换法应用于求解非线性可积方程的一般手续,以非零驻波边界条件下修正的非线性薛定谔(MNLS)方程为例,探求其孤子解;再通过简单的参数归零法直接得到导数非线性薛定谔(DNLS)方程在非零常数边界条件下的相应孤子解,亮/暗孤子解随时间和空间变量的演化也通过图像加以演示,所得孤子解与反散射方法得到的结果一致相符。
关键词(KeyWords): 孤子;非线性方程;修正的非线性薛定谔方程;导数非线性薛定谔方程;Hirota方法;Hirota双
基金项目(Foundation):
作者(Author): 周国全,雒润嘉,齐蓥
参考文献(References):
- [1] ABHINAV K,GUHA P,MUKHERJEE I.Study of quasi-integrable and non-holonomic deformation of equations in the NLS and DNLS hierarchy[J/OL].Journal of Mathematical Physics,2018,59(10).DOI:10.1063/1.5019268.
- [2] SONG Y,SHI X,WU C,et al.Recent progress of study on optical solitons in fiber lasers[J/OL].Applied Physics Reviews,2019,6(2).DOI:10.1063/1.5091811.
- [3] CHEN Z Y,HUANG N N.Explicit N-soliton solution of the modified nonlinear Schrodinger equation[R]//PHYSICAL REVIEW A:卷41.1990.
- [4] LASHKIN V M.N-soliton solutions and perturbation theory for the derivative nonlinear Schr?dinger equation with nonvanishing boundary conditions[J/OL].Journal of Physics A:Mathematical and Theoretical,2007,40(23):6119-6132.DOI:10.1088/1751-8113/40/23/008.
- [5] KHALIQUE C M,PLAATJIE K,ADEYEMO O D.First integrals,solutions and conservation laws of the derivative nonlinear Schr?dinger equation[J/OL].Partial Differential Equations in Applied Mathematics,2022,5.DOI:10.1016/j.padiff.2022.100382.
- [6] 唐宇轩,周国全.用Hirota双线性导数变换法求MNLS方程的Rogue波解[J].数学物理学报,2023,43(A(1)):132-142.TANG Y X,ZHOU G Q.The Rogue wave solution of MNLS/DNLS equation based on Hirota's bi-linear derivative transformation[J].Acta Mathematica Scientia,2023,43,A(1):132-142.(in Chinese)
- [7] CAI H.Research about MNLS Equation and DNLS Equation[D].Wuhan:Wuhan University,2005.
- [8] CHEN X J,YANG J,LAM W K.N-soliton solution for the derivative nonlinear Schr?dinger equation with nonvanishing boundary conditions[J/OL].Journal of Physics A:Mathematical and General,2006,39(13):3263.https://dx.doi.org/10.1088/0305-4470/39/13/006.DOI:10.1088/0305-4470/39/13/006.
- [9] MJ?LHUS E,HADA T.Nonlinear waves and chaos in space plasmas[M].Tokyo,1997.
- [10] CHEN X J,YANG J,LAM W K.N-soliton solution for the derivative nonlinear Schr?dinger equation with nonvanishing boundary conditions[J/OL].Journal of Physics A:Mathematical and General,2006,39(13):3263-3274.DOI:10.1088/0305-4470/39/13/006.
- [11] KAUP D J,NEWELL A C.An exact solution for a derivative nonlinear Schr?dinger equation[J/OL].Journal of Mathematical Physics,1977,19(4):798-801.DOI:10.1063/1.523737.
- [12] ZHOU G Q,HUANG N N.An N-soliton solution to the DNLS equation based on a revised inverse scattering transform[J].Journal of Physics A:Mathematical and Theoretical,2007,40.
- [13] NIAN-NING HUANG,ZONG-YUN CHEN.Alfven solitons[J/OL].Journal of Physics A:Mathematical and General,1990,23(4):439.https://dx.doi.org/10.1088/0305-4470/23/4/014.DOI:10.1088/0305-4470/23/4/014.
- [14] ZHOU G Q.Explicit breather-type and pure N-soliton solution of DNLS+ equation with nonvanishing boundary condition[J].Wuhan University Journal of Natural Sciences,2013,18:147-155.
- [15] ZHOU G Q,BI X T.Soliton solution of the DNLS equation based on Hirota's bilinear derivative transform[J].Wuhan University Journal of Natural Sciences,2009,14:505-510.
- [16] LI X J,ZHOU G Q.Mixed breather-type and pure soliton solution of DNLS equation[J/OL].Wuhan University Journal of Natural Sciences,2017,22(3):223-232.https://doi.org/10.1007/s11859-017-1239-0.DOI:10.1007/s11859-017-1239-0.
- [17] ZHOU G Q,LI X J.Space periodic solutions and rogue wave solution of the derivative nonlinear Schr?dinger equation[J/OL].Wuhan University Journal of Natural Sciences,2017,22:373-379.DOI:10.1007/s11859-017-1261-2.
- [18] HIETARINTA J,NIMMO J.Foreword[M]//BOLLOBAS B,FULTON W,KATOK A,et al.The Direct Method in Soliton Theory.New York:Cambridge University Press,2004:vii-viii.
- [19] HIROTA R.The direct method in soliton theory[M].New York:Cambridge University Press,2004.
扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享