刚性球冲击悬臂梁诱发的大位移研究:半解析解和实验LARGE DISPLACEMENT INDUCED BY A RIGID SPHERE IMPACT ON CANTILEVER:SEMI-ANALYTICAL SOLUTION AND EXPERIMENT
黄小平,李善鹏,田诗豪,于红,刘建林
摘要(Abstract):
固体对弹性结构的冲击动力学模型在许多工程领域中具有广泛应用。其中,对刚性球冲击所诱发的悬臂梁的大位移的系统研究尚是一个悬而未解的基本问题。在本研究中,我们通过建立的动载荷模型,表达出了悬臂梁发生大变形时的最大挠度,并将其与小变形模型进行了比较;同时还开展了实验和有限元模拟,经过验证发现大变形模型更加准确,尤其是当悬臂梁呈现出明显的几何非线性时应采用该模型。结果表明,梁的最大挠度受三个独立的无量纲参数控制,并分别讨论了其对最大挠度的影响。这些研究发现为人们深刻理解细长结构的冲击过程提供了理论参考,也对设计微尺度的新器件和新材料具有启发意义。
关键词(KeyWords): 悬臂梁;冲击;大位移;应变能;最大挠度
基金项目(Foundation): 国家自然科学基金(11672335)资助
作者(Author): 黄小平,李善鹏,田诗豪,于红,刘建林
参考文献(References):
- [1] BIRD J C,DHIMAN R,KWON H M,et al.Reducing the contact time of a bouncing drop[J].Nature,2013,503:385-388.
- [2] NAIK N K,DOSHI A V.Ballistic impact behaviour of thick composites:Parametric studies[J].Composite Structures,2008,82:447-464.
- [3] CHEESEMAN B A,BOGETTI T.Ballistic impact into fabric and compliant composite laminates[J].Composite Structures,2003,61:161-173.
- [4] JIA W,QIU H H.Experimental investigation of droplet dynamics and heat transfer in spray cooling[J].Experimental Thermal and Fluid Science,2003,27:829-838.
- [5] ERSOY N E,ESLAMIAN M.Capillary surface wave formation and mixing of miscible liquids during droplet impact onto a liquid film[J].Physics of Fluids,2019,31:012107.
- [6] BARARI A,KALIJI H D,GHADIMI M,et al.Non-linear vibration of Euler-Bernoulli beams[J].Latin American Journal of Solids and Structures,2011,8:139-148.
- [7] DIKEN H.Vibration control of a rotating Euler-Bernoulli beam[J].Journal of Sound and Vibration,2000,232:541-551.
- [8] SUN W F,ZENG Q H,YU A B,et al.Calculation of normal contact forces between silica nanospheres[J].Langmuir,2013,29:7825-7837.
- [9] MANES A,LUMASSI D,GIUDICI L,et al.An experimental-numerical investigation on aluminium tubes subjected to ballistic impact with soft core 7.62 ball projectiles[J].Thin-Walled Structures,2013,73:68-80.
- [10] MYLVAGANAM K,ZHANG L C.Energy absorption capacity of carbon nanotubes under ballistic impact[J].Applied Physics Letters,2006,89:123127.
- [11] ANNIN B D,ALEKHIN V V,BABICHEV A V,et al.Computer simulation of nanotube contact[J].Mechanics of Solids,2010,45:352-369.
- [12] YANG J L,LU G Y,YU T X,et al.Experimental study and numerical simulation of pipe-on-pipe impact[J].International Journal of Impact Engineering,2009,36:1259-1268.
- [13] GUéGAN P,OTHMAN R,LEBRETON D,et al.Experimental investigation of rubber ball impacts on aluminium plates[J].International Journal of Crashworthiness,2010,15:391-399.
- [14] LIU H,LIU J,YANG J L,et al.Low velocity impact of a nanoparticle on a rectangular nanoplate:A theoretical study[J].International Journal of Mechanical Sciences,2017,123:253-259.
- [15] ABRATE S.Impact on laminated composite materials[J].Applied Mechanics Reviews,1991,44:155-190.
- [16] ABRATE S.Impact on laminated composites:recent advances[J].Applied Mechanics Reviews,1994,47:517-544.
- [17] ABRATE S.Modeling of impacts on composite structures[J].Composite Structures,2001,51:129-138.
- [18] OLSSON R.Mass criterion for wave controlled impact response of composite plates[J].Composites Part A:Applied Science and Manufacturing,2000,31:879-887.
- [19] OLSSON R.Analytical prediction of large mass impact damage in composite laminates[J].Composites Part A:Applied Science and Manufacturing,2001,32:1207-1215.
- [20] OLSSON R.Closed form prediction of peak load and delamination onset under small mass impact[J].Composite Structures,2003,59:341-349.
- [21] MALEKZADEH P,Dehbozorgi M.Low velocity impact analysis of functionally graded carbon nanotubes reinforced composite skew plates[J].Composite Structures,2016,140:728-748.
- [22] LEE L J,HUANG K Y,FANN Y J.Dynamic responses of composite sandwich plate impacted by a rigid ball[J].Journal of Composite Materials,1993,27:1238-1256.
- [23] CHRISTOFOROU A P,SWANSON S R.Analysis of simply-supported orthotropic cylindrical shells subject to lateral impact loads[J].Journal of Applied Mechanics,1990,57:376-382.
- [24] CHRISTOFOROU A P,SWANSON S R.Analysis of impact response in composite plates[J].International Journal of Solids and Structures,1991,27:161-170.
- [25] GONG S W,TOH S L,SHIM V P W.The elastic response of orthotropic laminated cylindrical shells to low-velocity impact[J].Composites Engineering,1994,4:247-266.
- [26] GONG S W,LAM K Y,REDDY J N.The elastic response of functionally graded cylindrical shells to low-velocity impact[J].International Journal of Impact Engineering,1999,22:397-417.
- [27] ZHANG L W,SONG Z G,QIAO P,et al.Modeling of dynamic responses of CNT-reinforced composite cylindrical shells under impact loads[J].Computer Methods in Applied Mechanics and Engineering,2017,313:889-903.
- [28] JAM J E,KIANI Y.Low velocity impact response of functionally graded carbon nanotube reinforced composite beams in thermal environment[J].Composite Structures,2015,132:35-43.
- [29] SEIFOORI S,LIAGHAT G H.Low velocity impact of a nanoparticle on nanobeams by using a nonlocal elasticity model and explicit finite element modeling[J].International Journal of Mechanical Sciences,2013,69:85-93.
- [30] RANJBAR M,FELI S.Low velocity impact analysis of an axially functionally graded carbon nanotube reinforced cantilever beam[J].Polymer Composites,2018,39:E969-E983.
- [31] YU T X,STRONGE W J.Large deflections of a rigid-plastic beam-on-foundation from impact[J].International Journal of Impact Engineering,1990,9:115-126.
- [32] WANG H,ZHAO X J.Mechanical response of a I-sectional cantilever beam under impact load[J].Mechanics,Materials Science & Engineering,2018,17:2412-5954.
- [33] BISSHOPP K E,RUCKER D C.Large deflection of cantilever beams[J].Quarterly of Applied Mathematics,1945,3:272-275.
- [34] TIMOSHENKO S P,GERE J M.Mechanics of materials[M].Boston:PWS Press,1973.