基于林德斯泰特-庞加莱法的双节拍器耦合系统同步规律研究RESEARCH ON SYNCHRONIZATION OF DOUBLE METRONOME COUPLING SYSTEM BASED ON LINDSTEDT-POINCARé METHOD
谭景芳,王成会,莫润阳
摘要(Abstract):
本文在双节拍器耦合系统动力学方程的基础上,利用Runge-Kutta(龙格-库塔)法对振动系统进行数值分析,通过摆杆摆角随时间演化的曲线图像,讨论影响系统同步性质的因素。利用L-P(林德斯泰特-庞加莱)法研究相同双节拍器耦合系统的系统参数对于摆杆摆动振幅和摆动频率的影响,得到无耦合双节拍器系统的近似解,结合数值分析比较系统参数对同步周期和振幅的影响;在理论分析得到的近似同步周期中设定同步系数q值,并通过拟合函数进行拟合,拟合后得到的同步周期与数值分析的周期基本一致。本文能为更好地理解耦合系统的同步性质提供参考,也能为学生进行双节拍器同步物理实验提供一些理论参考,增强学生理论联系实际的能力。
关键词(KeyWords): 耦合同步;振动系统;频率响应
基金项目(Foundation): 教育部高等学校物理学类专业教学指导委员会项目“师范专业认证背景下基于OBE理念的力学课程教学模式研究”(2018-ZDGH-201);; 师范专业认证背景下师范院校教师教育课程设置研究(JSJY2021019);; 陕西师范大学课程思政示范课建设项目“理论力学”
作者(Author): 谭景芳,王成会,莫润阳
参考文献(References):
- [1] ZHOU Z S,KURTHS J,ARENAS A,et al.Synchronization in Complex Networks[D].New York:Springer Theses,2016.
- [2] FOSTER R G,KREITZMAN L.The Rhythms of Life[M].New Jersey:Princeton University Press,200:10.
- [3] KURAMOTO Y.Self-entrainment of a population of coupled non-linear oscillators[J].Lecture Notes in Physics,1975,39:420-422.
- [4] 王学彬,徐灿,郑志刚.多重耦合振子系统的同步动力学[J].物理学报,2020,69(17):31-42.WANG X B,XU C,ZHENG Z G.Synchronization dynamics of multiple coupled vibration subsystems[J].Acta Physica Sinica,2020,69(17):31-42.(in Chinese)
- [5] YU D,YANG J Z.Effects of Correlation between Network Structure and Dynamics of Oscillators on Synchronization Transition in a Kuramoto Model on Scale-Free Networks[J].Communications in Theoretical Physics,2014,02:197-202.
- [6] ERNEST M,DIEGO P.Kuramoto Model for Excitation-Inhibition-Based Oscillations[J].Physical Review Letters,2018,120(24):244101.1-244101.6
- [7] 王晓军,吕敬,王琪.多节拍器耦合系统的动力学建模与分析——动量(矩)定理的应用[J].力学与实践,2017(6):606-609.WANG X J,LV J,WANG Q.Dynamic Modeling and Analysis of Multi-metronome Coupling Systems—Application of momentum (Moment) Theorem[J].Mechanics in Engineering,2017(6):606-609.(in Chinese)
- [8] 金山,吕建锋.平行摆放的节拍器相互耦合的动力学机制[J].大学物理,2018(8):47-53.JIN S,LV J F.The dynamics of the coupling of parallel metronomes[J].College Physics,2018(8):47-53.(in Chinese)
- [9] 路峻岭,顾晨,秦联华,等.关于多个节拍器自锁同步实验的探究[J].大学物理,2018,37(9):25-29.LU J L,GU C,QIN L H,et al.Research on the self-locking synchronization experiment of multiple metronomes[J].College Physics,2018,37(9):25-29.(in Chinese)
- [10] ZHANG J,YU Y Z,WANG X G.Synchronization of coupled metronomes on two layers[J].Frontiers of Physics,2017,12(6):53-62.
- [11] 朱存远,李朝刚,方泉,等.用久期微扰理论将弹簧振子模型退化为耦合模理论[J].物理学报,2020(7):120-126.ZHU C Y,LI C G,FANG Q,et al.The spring oscillator model degenerated into the coupled-mode theory by using secular perturbation theory[J].Acta Physica Sinica,2020(7):120-126.(in Chinese)
- [12] 李朝刚,汪茂胜,方泉,等.表象变换和久期微扰理论在耦合杜芬方程中的应用[J].物理学报,2021(2):353-359.LI C G,WANG M S,FANG Q,et al.Applications of representation transformation and secular perturbation theory to coupled Duffing equations[J].Acta Physica Sinica,2021(2):353-359.(in Chinese)