热电器件性能的生态优化研究THE PERFORMANCE OF THERMOELECTRIC DEVICES UNDER ECOLOGICAL CRITERIA
张荣,张雷,唐军,石礼伟
摘要(Abstract):
基于热电效应制造的热电器件在热能与电能之间的转换方面具有特殊优势,而对热电器件的性能优化更具有现实意义。基于有限时间热力学理论,本文利用生态判据研究了热电热机和制冷机的热力学特征,在构建生态判据函数的基础上,推导出了热电器件的效率和制冷系数表达式,并且阐释了环境温度和热电品质因子对于效率以及制冷系数的影响,发现环境温度较低(较高)时,利于增强热电热机(制冷机)的效率(制冷系数)。此外,澄清了生态判据和权衡优化判据之间关系。
关键词(KeyWords): 热电器件;生态判据;效率;制冷系数
基金项目(Foundation): 教育部大学物理课程教学指导委员会教学改革项目(DWJZW202123hd);; 中国矿业大学教学改革重点项目(2021ZD08);中国矿业大学教学改革研究项目(2023ZDKT05-208,2023ZX55)
作者(Author): 张荣,张雷,唐军,石礼伟
参考文献(References):
- [1] 赵凯华,陈熙谋.新概念物理教程:电磁学[M].北京:高等教育出版社,2006:302-306.
- [2] 许志健,徐行.塞贝克效应与温差发电[J].现代物理知识,2004,16(1):41-42.XU Z J,XU X.Seebeck effect and power generation via temperature difference[J].Modern Physics,2004,16(1):41-42.(in Chinese)
- [3] 郭凯,骆军,赵景泰.热电材料的基本原理、关键问题及研究进展[J].自然杂志,2015,37(3):175-187.GUO K,LUO J,ZHAO J T.The basic principle,key problems and research progress of thermoelectric materials[J].Chinese Journal of Nature,2015,37(3):175-187.(in Chinese)
- [4] 赵新兵.热电材料与温差发电技术[J].现代物理知识,2013,25(3):40-44.ZHAO X B.Thermoelectric materials and temperature difference power generation technology[J].Modern Physics,2013,25(3):40-44.(in Chinese)
- [5] GOLDSMID H J.The physics of thermoelectric energy conversion[M].IOP Publishing,2017:2-1—2-8.
- [6] GOLDSMID H J.Introduction to thermoelectricity[M].Berlin:Springer,2009:9-24.
- [7] VAN DEN BROECK C.Thermodynamic efficiency at maximum power[J].Physical Review Letters,2005(95):190602.
- [8] HERNANDEZ A C,MEDINA A,ROCO J M M.Time,entropy generation,and optimization in low-dissipation heat devices[J].New J.Phys.,2015(17):075011.
- [9] APERTET Y,QUERDANE H,GOUPIL C,et al.From local force-flux relationships to internal dissipations and their impact on heat engine performance:The illustrative case of a thermoelectric generator[J].Physical Review E,2013(88):022137.
- [10] BENENTI G,SAITO K,GASATI G.Thermodynamic bounds on efficiency for systems with broken time-reversal symmetry[J].Physical Review Letters,2006(106):230602.
- [11] DE CISNEROS B J,ARIAS-HERNANDEZ L A,HERNANDEZ A C.Linear irreversible thermodynamics and coefficient of performance[J].Physical Review E,2006(73):057103.
- [12] HERNANDEZ A C,MEDINA A,ROCO J M M,et al.Unified optimization criterion for energy converters[J].Physical Review E,2001(63):037102.
- [13] DE TOMAS C,HERNANDEZ A C,ROCO J M M,et al.Low-dissipation heat devices:Unified trade-off optimization and bounds[J].Physical Review E,2013(85):012105.
- [14] IYYAPPAN I,PONMURUGAN M.Relations between the efficiency,power and dissipation for linear irreversible heat engine at maximum trade-off figure of merit[J].Journal of Statistical Mechanics:Theory and Experiment,2018:1-9.
- [15] GONZALEZ-AYANA J,HERNANDEZ A C,ROCO J M M.From maximum power to a trade-off optimization of low-dissipation heat engines:Influence of control parameters and the role of entropy generation[J].Physical Review E,2017(95):022131.
- [16] ANGULO BROWN F.An ecological optimization criterion for finitetime heat engines[J].Journal of Applied Physics,1991(69):7465-7469.
- [17] YAN Z.Comment on “A general property of endoreversible thermal engines” [J.Appl.Phys.81,2973 (1997)][J].Journal of Applied Physics,2001(89):1518-1519.
- [18] YAN Z.Comment on “An ecological optimization criterion for finitetime heat engines”[J.Appl.Phys.69,7465 (1991)].Journal of Applied Physics,1993(73):3583.
- [19] LONG R,LIU W.Ecological optimization for general heat engines[J].Physica A,2015(434):232-239.
- [20] WANG H,WU G X.Ecological optimization for generalized irreversible macro/nano thermosize engine[J].Journal of Applied Physics,2013(113):054309.
- [21] LONG R,LIU W.Ecological optimization and coefficient of performance bounds of general refrigerators[J].Physica A,2016(443):14-21.