物态方程曲面上临界点高斯曲率的物理意义PHYSICAL SIGNIFICANCE OF GAUSSIAN CURVATURE AT CRITICAL POINTS OF EQUATION OF STATE SURFACES
熊跃龙,叶海明,杜文康,王鑫,刘全慧
摘要(Abstract):
物态方程曲面在临界点的高斯曲率为零与否,完全由压缩率临界指数确定。根据微分几何中高斯曲率-局部曲面形状之间的关系,可以推知一个高斯曲率-临界指数关系:相变点两侧的压缩率临界指数只有两种情况,都等于1或者同时大于1。作为高斯曲率-临界指数关系的一个检验,我们直接计算理想玻色气体物态方程曲面在临界点的高斯曲率,发现临界指数大于1,这一点和实验结果相符。
关键词(KeyWords): 相变;临界指数;物态方程;微分几何;高斯曲率
基金项目(Foundation): 国家自然科学基金资助项目(11675051);; 高等学校教学研究项目(DWJZW202136zn)
作者(Author): 熊跃龙,叶海明,杜文康,王鑫,刘全慧
参考文献(References):
- [1] 刘全慧,几何视角下的热力学[J].大学物理,2021,40(8):1.LIU Q H.Thermodynamics and geometry[J].College Physics,2021,40(8):1.(in Chinese)
- [2] 刘全慧,懂几何者,在物理学中无往而不利[J].物理与工程,2021,31(3):3-7.LIU Q H.Geometry is beneficial to all physics students and researchers[J].Physics and Engineering,2021,31(3):3-7.(in Chinese)
- [3] YU J S,DU W K,LIU Q H.Geometrical Aspect of Compressibility Critical Exponent[J].Front.Phys.,2022(10):850296.
- [4] YU J S,ZHOU X,CHEN J F,et al.Local shape of the vaporliquid critical point on the thermodynamic surface and the van der Waals equation of State[J].Front.Phys.,2021(9):679083.
- [5] PATHRIA R K,BEALE P D.Statistical mechanics[M].3rd ed.Oxford:ButterworthHeinemann,2011.
- [6] do CARMO M P.Differential geometry of curves and surfaces[M].New York:Prentice-Hall,1976.
- [7] https://en.wikipedia.org/wiki/Universality_class[R/OL](2020-12-10).
- [8] GUNTON J D,BUCKINGHAM M J.Condensation of the ideal Bose gas as a cooperative transition[J].Phys.Rev.,1968(166):52.