基于等离子体光学效应的调谐结构色器件发展及应用DEVELOPMENT AND APPLICATIONS OF TUNABLE STRUCTURAL COLOR DEVICES BASED ON PLASMONICS EFFECTS
梁冬冬,李绍军,李阳,胡崔宸
摘要(Abstract):
表面等离激元是一种在金属与介质交界面处发生的电子集群震荡,是一种由入射光引起的表面电磁波,其特点在于高度局域化。基于表面等离激元实现对微纳光电器件的精准调控成为目前科研热点。本文聚焦在人工微纳结构的光谱调控器件最新进展,综述通过设计不同的微纳结构,改变结构参数,材料属性,机械拉伸柔性衬底等方法对光谱进行精准调控,实现了结构色从静态到动态的调谐改进。可实时动态调谐的滤波器在军事、国防、信息安全等领域拥有广阔的应用前景。
关键词(KeyWords): 表面等离激元;微纳光子器件;人工微纳结构;光谱调控;器件设计
基金项目(Foundation):
作者(Author): 梁冬冬,李绍军,李阳,胡崔宸
参考文献(References):
- [1] SRINIVASARAO M.Nano-optics in the biological world:beetles,butterflies,birds,and moths[J].Chemical reviews,1999,99(7):1935-1962.
- [2] WHITNEY H M,KOLLE M,ANDREW P,et al.Floral iridescence,produced by diffractive optics,acts as a cue for animal pollinators[J].Science,2009,323(5910):130-133.
- [3] KINOSHITA S,YOSHIOKA S.Structural colors in nature:The role of regularity and irregularity in the structure[J].ChemPhysChem,2005,6(8):1442-1459.
- [4] KINOSHITA S,YOSHIOKA S,FUJII Y,et al.Photophysics of structural color in the Morphobutterflies[J].Forma-Tokyo-,2002,17(2):103-121.
- [5] GAO X,YAN X,YAO X,et al.The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography[J].Advanced Materials,2007,19(17):2213-2217.
- [6] PARKER A R,MCPHEDRAN R C,MCKENZIE D R,et al.Photonic engineering.Aphrodite's iridescence[J].Nature,2001,409(6816):36-37.
- [7] MARLOW F,MULDARISNUR,SHARIFI P,et al.Opals:Status and prospects[J].Angew.Chem.Int.Ed.,2009,48,6212-6233.
- [8] DARRAGH P J,GASKIN A J,TERRELL B C,et al.Origin of precious opal[J].Nature,1966,209(5018):13.
- [9] PARKER A R,WELCH V L,DRIVER D,et al.Structural colour:Opal analogue discovered in a weevil[J].Nature,2003,426(6968):786.
- [10] VUKUSIC P.Natural photonics[J].Physics World,2004,17(2):35.
- [11] SEAGO A E,BRADY P,VIGNERON J P,et al.Gold bugs and beyond:a review of iridescence and structural colour mechanisms in beetles (Coleoptera)[J].JR Soc.Interface,2009,6:S165-S184.
- [12] KOENDERINK A F,ALU A,POLMAN A.Nanophotonics:Shrinking light-based technology[J].Science,2015,348(6234):516-521.
- [13] SCHULLER J A,BARNARD E S,CAI W,et al.Plasmonics for extreme light concentration and manipulation[J].Nature materials,2010,9(3):193.
- [14] ATWATER H A,POLMAN A.Plasmonics for improved photovoltaic devices[J].Nature materials,2010,9(3):205.
- [15] CALDWELL J D,VURGAFTMAN I,TISCHLER J G,et al.Atomic-scale photonic hybrids for mid-infrared and terahertz nanophotonics[J].Nature nanotechnology,2016,11(1):9.
- [16] MEINZER N,BARNES W L,HOOPER I R.Plasmonic meta-atoms and metasurfaces[J].Nature Photonics,2014,8(12):889-898.
- [17] XIA F,WANG H,XIAO D,et al.Two-dimensional material nanophotonics[J].Nature Photonics,2014,8(12):899-907.
- [18] GRAMOTNEV D K,BOZHEVOLNYI S I.Plasmonics beyond the diffraction limit[J].Nature photonics,2010,4(2):83.
- [19] FANG Z,ZHU X.Plasmonics in nanostructures[J].Advanced Materials,2013,25(28):3840-3856.
- [20] WANG J,MA J,SHU J,et al.Tunable Terahertz Metalens based on Multifocusing Bidirectional Arrangement in Different Dimensions[J].IEEE Photon.J.,2019,11(1):4600311.
- [21] CHENG K,HU Z D,WANG Y,et al.High performance terahertz vortex beam generator based on square-split-ring metasurfaces[J].Opt.Lett.,2020,45(21):6054-6057.
- [22] SPINELLI P,FERRY V E,VAN DE GROEP J,et al.Plasmonic light trapping in thin-film Si solar cells[J].Journal of Optics,2012,14(2):024002.
- [23] ZHU J,YU Z,FAN S,et al.Nanostructured photon management for high performance solar cells[J].Materials Science and Engineering:R:Reports,2010,70(3-6):330-340.
- [24] FERRY V E,VERSCHUUREN M A,LARE M C,et al.Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells[J].Nano letters,2011,11(10):4239-4245.
- [25] FERRY V E,VERSCHUUREN M A,LI H B T,et al.Light trapping in ultrathin plasmonic solar cells[J].Optics express,2010,18(102):A237-A245.
- [26] ZHU J,YU Z,BURKHARD G F,et al.Optical absorption enhancement in amorphous silicon nanowire and nanoconearrays[J].Nano letters,2008,9(1):279-282.
- [27] WANG K X,YU Z,LIU V,et al.Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings[J].Nano letters,2012,12(3):1616-1619.
- [28] WANG S,WEIL B D,LI Y,et al.Large-area free-standing ultrathin single-crystal silicon as processable materials[J].Nano letters,2013,13(9):4393-4398.
- [29] CHEN X,JIA B,SAHA J K,et al.Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles[J].Nano letters,2012,12(5):2187-2192.
- [30] PATHI P,PEER A,BISWAS R.Nano-photonic structures for light trapping in ultra-thin crystalline silicon solar cells[J].Nanomaterials,2017,7(1):17.
- [31] WU C,NEUNER III B,JOHN J,et al.Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems[J].Journal of Optics,2012,14(2):024005.
- [32] ZHOU L,TAN Y,JI D,et al.Self-assembly of highly efficient,broadband plasmonic absorbers for solar steam generation[J].Science Advances,2016,2(4):e1501227.
- [33] PANAGIOTOPOULOS N T,DIAMANTI E K,KOUTSOKERAS L E,et al.Nanocomposite catalysts producing durable,super-black carbon nanotube systems:Applications in solar thermal harvesting[J].ACS nano,2012,6(12):10475-10485.
- [34] HU X,XU W,ZHOU L,et al.Tailoring graphene oxide-based aerogels for efficient solar steam generation under one Sun[J].Advanced materials,2017,29(5):1604031.
- [35] LI X,XU W,TANG M,et al.Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path[J].Proceedings of the National Academy of Sciences,2016,116(49):13953-13958.
- [36] HU X,ZHANG X,LIANG L,et al.High-performance flexible broadband photodetector based on organolead halide perovskite[J].Advanced Functional Materials,2014,24(46):7373-7380.
- [37] YUAN H,LIU X,AFSHINMANESH F,et al.Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction[J].Nature nanotechnology,2015,10(8):707-713.
- [38] MANGA K K,WANG J,LIN M,et al.High-performance broadband photodetector using solution-processiblePbSe-TiO2-graphene hybrids[J].Advanced materials,2012,24(13):1697-1702.
- [39] WANG H,CHEN Q,WEN L,et al.Titanium-nitride-based integrated plasmonic absorber/emitter for solar thermophotovoltaic application[J].Photonics Research,2015,3(6):329-334.
- [40] ZHOU W X,SHEN Y,HU E T,et al.Nano-Cr-film-based solar selective absorber with high photo-thermal conversion efficiency and good thermal stability[J].Optics Express,2012,20(27):28953-28962.
- [41] Y AN J,KIM M H,ELLE J A,et al.Dual-gated bilayer graphene hot-electron bolometer[J].Nature Nanotechnology,2012,7(7):472.
- [42] GEFFROY B,LE ROY P,PRAT C.Organic light-emitting diode (OLED) technology:Materials,devices and display technologies[J].Polymer International,2006,55(6):572-582.
- [43] BURROUGHES J H,BRADLEY D D C,BROWN A R,et al.Light-emitting diodes based on conjugated polymers[J].Nature,1990,347(6293):539.
- [44] CARUGE J M,HALPERT J E,WOOD V,et al.Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers[J].Nature Photonics,2008,2(4):247.
- [45] SABNIS R W.Color filter technology for liquid crystal displays[J].Displays,1999,20(3):119-129.
- [46] CHO H,HAN S,KWON J,et al.Self-assembled stretchable photonic crystal for a tunable color filter[J].Optics letters,2018,43(15):3501-3504.
- [47] PLATANIOTIS K,VENETSANOPOULOS A N.Color image processing and applications[M].Berlin,Springer Science & Business Media,2013:169.
- [48] DILLON P L P,LEWIS D M,KASPAR F G.Color imaging system using a single CCD area array[J].IEEE Transactions on Electron Devices,1978,25(2):102-107.
- [49] LULé T,BENTHIEN S,KELLER H,et al.Sensitivity of CMOS based imagers and scaling perspectives[J].IEEE Transactions on Electron Devices,2000,47(11):2110-2122.
- [50] YOKOGAWA S,BURGOS S P,ATWATER H A.Plasmonic color filters for CMOS image sensor applications[J].Nano Letters,2012,12(8):4349-4354.
- [51] HORIE Y,HAN S,LEE J Y,et al.Visible wavelength color filters using dielectric subwavelength gratings for backside-illuminated CMOS image sensor technologies[J].Nano Letters,2017,17(5):3159-3164.
- [52] OGAWA I,KURIHARA K,UCHIDA S,et al.Image scanner[P].US Patent,1991,4996604.
- [53] KO F J,SHIEH H P D.High-efficiency micro-optical color filter for liquid-crystal projection system applications[J].Applied optics,2000,39(7):1159-1163.
- [54] CHEN Q,CUMMING D R S.High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films[J].Optics Express,2010,18(13):14056-14062.
- [55] SHIMIZU T,INAMI T,TAKEGAWA H,et al.Color filters from pigment-dispersed photopolymers[J].J.Photopolym.Sci.Technol.,1989,2:243-248.
- [56] GREGORY P.High-technology applications of organic colorants[M].New York,Springer Science & Business Media,2012:97-105.
- [57] CHENG F,GAO J,LUK T S,et al.Structural color printing based on plasmonicmetasurfaces of perfect light absorption[J].Scientific reports,2015,5:11045.
- [58] XU T,WU Y K,LUO X,et al.Plasmonicnanoresonators for high-resolution colour filtering and spectral imaging[J].Nature communications,2010,1:59.
- [59] XU T,SHI H,WU Y K,et al.Structural colors:from plasmonic to carbon nanostructures[J].Small,2011,7(22):3128-3136.
- [60] EBBESEN T W,LEZEC H J,GHAEMI H F,et al.Extraordinary optical transmission through sub-wavelength hole arrays[J].Nature,1998,391(6668):667.
- [61] BOURGIN D G.BETHE,H A.Theory of Diffraction by Small Holes[J].Math.Rev.,1945,6:165.
- [62] OTTO A.Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection[J].ZeitschriftfürPhysik A Hadrons and nuclei,1968,216(4):398-410.
- [63] WALLS K,CHEN Q,COLLINS S,et al.Automated design,fabrication,and characterization of color matching plasmonicfilters[J].IEEE Photonics Technology Letters,2012,24(7):602-604.
- [64] INOUE D,MIURA A,NOMURA T,et al.Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes[J].Applied Physics Letters,2011,98(9):093113.
- [65] CHEN Q,CUMMING D R S.High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films[J].Optics Express,2010,18(13):14056-14062.
- [66] YOKOGAWA S,BURGOS S P,ATWATER H A.Plasmonic color filters for CMOS image sensor applications[J].Nano Letters,2012,12(8):4349-4354.
- [67] DIEST K,DIONNE J A,SPAIN M,et al.Tunable color filters based on metal?insulator?metal resonators[J].Nano letters,2009,9(7):2579-2583.
- [68] ZENG B,GAO Y,BARTOLI F J.Ultrathin nanostructured metals for highly transmissiveplasmonic subtractive color filters[J].Scientific reports,2013,3:2840.
- [69] KAPLAN A F,XU T,JAY Guo L.High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography[J].Applied Physics Letters,2011,99(14):143111.
- [70] XU T,WU Y K,LUO X,et al.Plasmonicnanoresonators for high-resolution colour filtering and spectral imaging[J].Nature communications,2010,1:59.
- [71] YOON Y T,PARK C H,LEE S S.Highly efficient color filter incorporating a thin metal-dielectric resonant structure[J].Appl.Phys.Express,2012,5(2):022501.
- [72] GANESH N,XIANG A,BELTRAN N B,et al.Compact wavelength detection system incorporating a guided-mode resonance filter[J].Appl.Phys.Lett.,2007,90(8):081103.
- [73] DOBBS D W,GERSHKOVICH I,CUNNINGHAM B T.Fabrication of a graded-wavelength guided-mode resonance filter photonic crystal[J].Appl.Phys.Lett.,2006,89(12):123113.
- [74] CHEN P,LIANG R,HUANG Q,et al.Plasmonic filters and optical directional couplers based on wide metal-insulator-metal structure[J].Opt.Express,2011,19:7633.
- [75] ZHANG L,HAO J,YE H,et al.Theoretical realization of robust broadband transparency in ultrathin seamless nanostructures by dual blackbodies for near infrared light[J].Nanoscale,2013,5(8):3373-3379.
- [76] YOON Y T,LEE S S.Transmission type color filter incorporating a silver film based etalon[J].Optics Express,2010,18(5):5344-5349.
- [77] FREY L,PARREIN P,RABY J,et al.Color filters including infrared cut-off integrated on CMOS image sensor[J].Opt.Express,2011,19,13073.
- [78] LIU Y J,SI G Y,LEONG E S P,et al.Optically tunable plasmonic color filters[J].Applied Physics A,2012,107(1):49-54.
- [79] ROBERTS A S,PORS A,ALBREKTSEN O,et al.Subwavelengthplasmonic color printing protected for ambient use[J].Nano letters,2014,14(2):783-787.
- [80] DEVLIN R C,KHORASANINEJAD M,CHEN W T,et al.Broadband high-efficiency dielectric metasurfaces for the visible spectrum[J].Proceedings of the National Academy of Sciences,2016,113(38):10473-10478.
- [81] YANG B,LIU W,LI Z,et al.Polarization-sensitive structural colors with hue-and-saturation tuning based on all-dielectric nanopixels[J].Advanced Optical Materials,2018,6(4):1701009.
- [82] CHO H,HAN S,KWON J,et al.Self-assembled stretchable photonic crystal for a tunable color filter[J].Optics letters,2018,43(15):3501-3504.
- [83] 冯延,田楠,王继成,等.基于可拉伸材料的动态调谐彩色滤波器[J].应用光学,2019,40(6):1174-1180.FENG Y,TIAN N,WANG J C,et al.Dynamic tuning color filters based on stretchable materials[J].Journal of Applied Optics,2019,40(6):1174-1180.
- [84] HE W,FENG Y,HU Z D,et al.Tunable sensors with multifold nanorodmetasurfaces array based on hyperbolic metamaterials[J].IEEE Sensors Journal,2020,20(4):1801-1806.