赝势对计算石墨烯声子谱线的第一性原理研究THE INFLUENCE OF THE DIFFERENT PSEUDOPOTENTIALS ON CALCULATIONS OF THE PHONON SPECTRUM FOR GRAPHENE:A FIRST-PRINCIPLES STUDY
郭富强,王艳丽,尹国盛
摘要(Abstract):
石墨烯是理论与实验方面研究的热点,而探究其声子谱线结构又为研究力学、热力学等提供基础.本文采用基于密度泛函理论的第一性原理,运用不同的交换关联和赝势方法,计算了石墨烯以及石墨的声子谱线.对比研究发现:在声子谱低频率阶段,不同的赝势计算的结果差别很小;而在声子谱的高频率阶段,不同赝势计算的结果差别显著.相对于GGA交换关联,LDA交换关联计算的高频光学支有所软化,计算结果与实验值更加接近.相对于US赝势方法,PAW赝势方法计算的结果与实验值更加接近.综合比较,PAW-LDA赝势的计算结果与实验值最为接近.
关键词(KeyWords): 声子谱;石墨烯;赝势
基金项目(Foundation): 河南省科技发展计划基础与前沿技术研究项目(项目编号:132300410142);; 河南省教师教育教改研究项目(项目编号:2014-JSJYYB-008);; 郑州工业应用技术学院教改项目(项目编号:JG-150029)
作者(Author): 郭富强,王艳丽,尹国盛
参考文献(References):
- [1]Geim A K.Graphene:Status and prospects[J].Science,2009,1530:324.
- [2]Nicklow R,Wakabayashi N,Smith H G.Lattice dynamics of pyrolytic graphite[J].Phys.Rev.B,1972,5:4951.
- [3]Dolling G,Brockhouse B N.Lattice vibrations in pyrolitic graphite[J].Phys.Rev.,1962,128:1120.
- [4]Oshima C,Aizawa T,Souda R,et al.Surface phonon dispersion curves of graphite(0001)over the entire energy region[J].Solid State Commun.,1988,65:1601.
- [5]Maultzsch J,Reich S,Thomsen C,et al.Phonon dispersion in graphite[J].Phys.Rev.Lett.,2004,92:075501.
- [6]Jishi R A,Venkataraman L,Dresselhaus M S,et al.Phonon modes in carbon nanotubules[J].Chem.Phys.Lett.,1993,209:77.
- [7]Wirtz L,Rubio A.The phonon dispersion of graphite revisited[J].Solid State Commun.,2004,131:141.
- [8]Favot F,Corso A D.Phonon dispersions:Performance of the generalized gradient approximation[J].Phys.Rev.B,1999,60:11427.
- [9]Fanidisa C,Van Dycka D,Van Landuyt J.Inelastic scattering of high-energy electrons in a crystal in thermal equilibrium with the environment I.Theoretical framework[J].Ultramicroscopy,1992,41:55.
- [10]Gonze X.First-principles responses of solids to atomic displacements and homogeneous electric fields:Implementation of a conjugate-gradient algorithm[J].Phys.Rev.B,1997,55:10337.
- [11]Kohn W,Sham L J.Quantum density oscillations in an inhomogeneous electron gas[J].Phys.Rev.,1965,137:A1697.
- [12]Kohn W,Sham L J.Self-consistent equations including exchange and correlation effects[J].Phys.Rev.,1965,140:A1133.
- [13]Kresse G,Furthmüller J.Efficient iterative schemes for ab initio total-energy calculations using aplane-wave basis set[J].Phys.Rev.B,1996,54:11169.
- [14]Monkhorst H J,Pack J D.Special points for Brillouin-zone integrations[J].Phys.Rev.B,1976,13:5188.
- [15]Ooi N,Rairkar A,Adams J B.Density functional study of graphite bulk and surface properties[J].Carbon,2006,44:231.
- [16]McKie D,McKie C.Essentials of crystallography[M].Oxford:Oxford Press,1986,6-8.
- [17]Saito R,Dresselhaus G,Dresselhaus M S.Physical properties of carbon nanotubes,London:Imperial College Press,1998.
- [18]Dubay O,Kresse G.Accurate density functional calculations for the phonon dispersion relations of graphite layer and carbon nanotubes[J].Phys.Rev.B,2003,67:035401.
- [19]Touinstra F,Koenig J L.Raman spectrum of graphite[J].J.Chem.Phys.1970,53:1126.