平方反比有心力作用下的二体系统的一套初等教案A SET OF PRELIMINARY TEACHING PLAN FOR TWO-BODY SYSTEMS UNDER INVERSE SQUARE CENTRAL FORCE
周国全
摘要(Abstract):
以平方反比有心力作用下的椭圆轨道运动为例,文章基于开普勒第一、第二定律和牛顿的万有引力公式,配合有心力系统普遍适用的机械能守恒律,推演了平方反比有心力作用下的二体系统运动规律的一套初等的教学方案,而无需求解非线性的比耐(Binet)微分方程。用初等方法推导了椭圆轨道的能量与偏心率公式、圆轨道条件以及特征点的若干运动参数(速度及曲率半径)并给出了开普勒第三定律的一种新颖而简单的初等证明方法。
关键词(KeyWords): 有心力;平方反比有心力;万有引力;开普勒运动;轨道判据;轨道参数;二体问题
基金项目(Foundation): 高校教指委电动力学教学研究项目,项目编号:JZW-16-DD-15;; 中央高校教育教学改革专向项目-武汉大学“351人才计划”教学岗位资助项目
作者(Author): 周国全
参考文献(References):
- [1]咸世强.牛顿万有引力定律的发现渊源---从所谓的开普勒定律到万有引力定律[J].物理,1998(9):557-564.XIAN S Q.The establishment of Newton's law of universal gravitation[J].Physics,1998(9):557-564.(in Chinese)
- [2]鲁大龙.牛顿引力平方反比定律的发现[J].自然科学史研究.1994,14(1):50-59.LU D L.The discovery of inverse-quadric law for Newton's universal gravitation[J].Studies in the History of Natural Sciences,1994,13(1):50-59.(in Chinese)
- [3]赵诗华,宋彦琦,程涛,等.浅谈万有引力定律的发现与创新思维[J].大学物理,2013,32(4):35-52.ZHAO S H,SONG Y Q,et al.Brief talk about the discovery of universal gravitation law and innovative thinking[J].University Physics,2013,32(4):35-37.(in Chinese)
- [4]周衍柏.理论力学教程[M].北京:人民教育出版社,1979:64-87.
- [5]梁昆淼,力学(理论力学)下册[M].3版.北京:高等教育出版社,1995:110-123.
- [6]卢德馨.大学物理学[M].2版.北京:高等教育出版社,2003:76-80.
- [7]赵凯华,罗蔚茵,新概念物理教程.力学[M].2版.北京:高等教育出版社,2004:330-332;346-348.
- [8]ZHOU G Q.Tensor-Product Representation of LaplaceRunge-Lenz Vector for Two-body Kepler Systems[J].Wuhan Univ J Nat Sci,2017,22(1):051-056.
- [9]周国全.龙格-楞次矢量的张量积形式及其应用[J].大学物理,2015,34(1):12-15.ZHOU G Q.Tensor-product representation of LaplaceRunge-Lenz vector and its application[J].University Physics,2015,34(1):12-15.(in Chinese)
- [10]周国全.开普勒二体系统的修正和统一的Runge-Lenz矢量[J].物理与工程,2014,24(5):35-39.ZHOU G Q.The Modified and unified Runge-Lenz vector for two-body kepler systems[J].Physics and Engineering,2014,24(5):35-39.(in Chinese)
- [11]周国全.二次反比引力系统的统一的隆格-楞次矢量[J].物理通报;2014,(8):93-96.ZHOU G Q.The unified representation of Runge-Lenz vector about an inversely-quadric gravitation system[J].Physics Bulletin,2014(8):93-96.(in Chinese)
- [12]王仁川.Runge-Lenz矢量与反平方力场中质点的运动[J].大学物理,1986,5(4):7-10.WANG R C.The Runge-Lenz vector and the motion of a particle in an inversely-quadric gravitation field[J].University Physics,1986,5(4):7-10.(in Chinese)
- [13]郭雅洁,桑芝芳.平方反比律有心力场中轨道问题的又一解法[J].大学物理,2015,34(1):16-18.GUO Y J,SANG Z F.Another approach to the trajectory problem in an inversely-quadric and centric force field[J].University Physics,2015,34(1):16-18.(in Chinese)
- [14]周国全.一个矢量定理及其在物理教学与研究中的应用[J].物理通报,2015(6):32-35.ZHOU G Q.A vector theorem and its application in the physics teaching and research[J].Physics Bulletin,2015(6):32-35.(in Chinese)