超导量子计算门操作及其保真度测定的基本理论THE BASIC THEORY OF SUPERCONDUCTING QUANTUM COMPUTING GATE OPERATION AND ITS FIDELITY MEASUREMENT
宿非凡,杨钊华,邓永和
摘要(Abstract):
对于已有的超导量子比特器件,在进行系统标定之后构建相应的高保真度门操作是实现量子计算的关键步骤。作为“物理前沿介绍——超导量子计算”系列的第五篇,本文系统讨论通过微波脉冲构建超导量子比特门操作的物理图景以及基本方法,给出了一套单比特门操作的构建流程,并对门操作保真度的测定以及优化发展作延伸讨论。本文旨在帮助广大高校物理专业教师、高年级本科生、研究生以及对超导量子计算感兴趣的理工科背景读者系统了解超导量子比特门构建与门操作保真度测量与优化的整个基本过程。
关键词(KeyWords): 超导量子比特;门操作;保真度
基金项目(Foundation):
作者(Author): 宿非凡,杨钊华,邓永和
参考文献(References):
- [1]CHEN Z.Metrology of quantum control and measurement in superconducting qubits[D].University of California,Santa Barbara,2018.
- [2]宿非凡,杨钊华.约瑟夫森效应与超导量子电路的基本物理原理[J].物理与工程,2021,31(5):28-33.SU F,YANG Z H.Josephson effect and the basic physical principles of superconducting quantum circuits[J].Physics and Engineering,2021,31(5):28-33.(in Chinese)
- [3]宿非凡,杨钊华超导量子比特耦合与测控的物理原理[J].物理与工程,2022,32(4):210-217,228.SU F,YANG Z H.Principle of superconducting qubits coupling and their measurement and control[J].Physics and Engineering,2022,32(4):210-217,228.(in Chinese)
- [4]克里斯丁·莫兰量子计算编程实战-基于IBM QX量子计算平台[M].北京:清华大学出版社,2020.
- [5]MCKAY C,WOOD C J,SHELDON S,et al.Efficient Z-gates for quantum computing[J].Phy.Rev.A,2017,96:997-8.
- [6]XU K,LIU W Y,LI Z Y,et al.Realisation of adiabatic and diabatic CZ gates in superconducting qubits coupled with tunable coupler[J].2020,ar Xvi:2010.14053.
- [7]YAN F,KRANTZ P,SUNG Y,et al.tunable coupling scheme for implementing high-fidelity two-qubit gates[J].2018,ar Xvi:1803.09813v1.
- [8]PATTERSON A D,RAHAMIM J,TSUNODA T,et al.Calibration of cross-resonance two-qubit gate between directly coupled transmons[J].2019,Phys.Rev.Applied,12,064013.
- [9]CHOW M,GAMBETTA J M,TORNBERG L,et al.Calibration of cross-resonance two-qubit gate between directly coupled transmons[J].2009,Phys.Rev.Lett.102,090502.
- [10]MAGESAN E,GAMBETTA M,EMERSON J.Scalable and robust randomized benchmarking of quantum processes[J].2011,Phys.Rev.Lett.106,180504.
- [11]EMERSON J,Alicki R,ZYCZKOWSKI J.Scalable noise estimation with random unitary operators[J].2005,Opt.B:Quantum Semiclassical Opt.7,S347.
- [12]KNILL E,LEIBFRIED D,REICHLE R,et al.Randomized benchmarking of quantum gates[J].2008,Phys.Rev.A,77,012307.
- [13]KNILL E.Quantum computing with realistically noisy devices[J].2005,Nature,434,39.
- [14]GOTTESMAN D.The Heisenberg representation of quantum computers[J].1998,ar Xvi:quant-ph/9807006.
- [15]LéVI B,LóPEZ C,EMERSON J,et al.Efficient error characterization in quantum information processing[J].2007,Phys.Rev.A 75,022314.
- [16]RAUSSENDORF R,HARRINGTON J.Fault-tolerant quantum computation with high threshold in two dimensions[J].2007,Phys.Rev.Lett.98,190504.
- [17]MICHAEL N,ISAAC L C.Quantum computation and quantum information[M].Massachusetts,Massachusetts Institute of Technology,2010.
- [18]MAGESAN E,GAMBETTA M,JOHNSON R,et al.Efficient measurement of quantum gate error by interleaved randomized benchmarking[J].2012,Phys.Rev.Lett.,109,080505.
- [19]SU F,YANG Z H,ZHAO S K,et al.Fabrication and characterization of superconducting multiqubit device with niobium base layer[J].2021,Chin.Phys.B,30,100304.
- [20]MORVAN A,RAMASESH V,BLOK M S,et al.Qutrit randomized benchmarking[J].2021,Phys.Rev.Lett.,126,210504.
- [21]GAMBETTA M,CO'RCOLES A D,MERKEL S T,et al.Characterization of addressability by simultaneous randomized benchmarking[J].2012,Phys.Rev.Lett.,109,240504.
- [22]KWON S,TOMONAGA A,BHAI L,et al.Gatebased superconducting quantum computing[J].2021,Appl.Phys.,129,041102.
- [23]MOTZOI F,GAMBETTA M,REBENTROST P,et al.Simple pulses for elimination of leakage in weakly nonlinear qubits[J].2009,Phys.Rev.Lett.,103,1105501.
- [24]KRANTZ P,KJAERGAARD M,YAN F,et al.quantum engineer's guide to superconducting qubits[J].2019,ar Xvi:1904.06560v2.
- [25]SAROVAR M,PROCTOR T,RUDINGER K,et al.Detecting crosstalk errors in quantum information processors[J].2020,ar Xvi:1908.09855v3.
- [26]KELLY J.Fault-tolerant superconducting qubits[D].Yale University,New Haven,2015.
- [27]JOHNSON R.Controlling photons in superconducting electrical circuits[D].UC Santa Barbara,Santa Barbara,2011.
- [28]YAN Z,ZHANG R,GONG M,et al.Supplementary materials for strongly correlated quantum walks with 12-qubit superconducting processor[J].Science,2019,364,753.
- [29]RASMUSSEN E,ZINNER N T.Parameterized two-qubit gates for enhanced variational quantum eigensolver.2022,ar Xvi:2203.04978.
- [30]GAEBLER P,MEIER A M,TAN T R,et al.Randomized benchmarking of multiqubit gates.2012,Phys.Rev.Lett.,108,260503.