拓扑绝缘体中两带模型的规范理论A GAUGE THEORY IN TWO-BAND MODEL OF TOPOLOGICAL INSULATOR
常治文,刘鑫
摘要(Abstract):
基于量子霍尔效应发展而来的拓扑绝缘体是凝聚态物理重要的科学前沿之一。通常可用第一陈数(Chern number)这一拓扑不变量来描述时间反演对称性破缺的拓扑绝缘体。传统上表征拓扑绝缘体的拓扑场论是一种有效场论,其中的基本场由"统计规范势"来充当,给出的是系统的大范围拓扑性质。本文当中我们对两带模型(two-band model)引入一种新的拓扑规范理论,它以群空间的哈密顿矢量和布洛赫波函数为基本场,可诱导出单极(monopole)与半子(meron)拓扑缺陷。
关键词(KeyWords): 拓扑绝缘体;量子霍尔效应;拓扑场论;两带模型;拓扑激发
基金项目(Foundation): 国家自然科学基金(11572005);; 北京市自然科学基金重点项目(Z180007)
作者(Author): 常治文,刘鑫
参考文献(References):
- [1] HASAN M Z,KANE C L.Colloquium:Topological insulators[J].Reviews of Modern Physics,2010,82:3045-3067.
- [2] QI X L,ZHANG S C.Topological insulators and superconductors[J].Reviews of Modern Physics,2011,8:1057-1110.
- [3] von KLITZUNG K,DORDA G,PEPPER M.New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance[J].Physical Review Letters,1980,45:494-497.
- [4] THOULESS D J,KOHMOTO M,NIGHTINGALE M P,et al.Quantized Hall conductance in a two-dimensional periodic potential[J].Physical Review Letters,1982,49:405-408.
- [5] TSUI D C,STORMER H L,GOSSARD A C.Two-dimensional magnetotransport in the extreme quantum limit[J].Physical Review Letters,1982,48:1559-1562.
- [6] LAUGHLIN R B.Anomalous quantum Hall effect:An incompressible quantum fluid with fractionally charged excitations[J].Physical Review Letters,1983,50:1395-1398.
- [7] JAIN J K.Composite-fermion approach for the fractional quantum Hall effect[J].Physical Review Letters,1989,63:199-202.
- [8] WEN X G,NIU Q.Ground-state degeneracy of the fractional quantum Hall states in the presence of a random potential and on high-genusRiemann surfaces[J].Physical Review B,1990,41:9377-9396.
- [9] HALDANE F D M.Model for a quantum Hall effect without landau levels:Condensed-matter realization of the “parity anomaly”[J].Physical Review Letters,1988,61:2015-2018.
- [10] YAKOVENKO V M.Chern-Simons terms and n field in Haldane’s model for the quantum Hall effect without landau levels[J].Physical Review Letters,1990,65:251-254.
- [11] FRADKIN E.Field theories of condensed matter physics[M].2nd edition.Cambridge University Press,2013.
- [12] KANE C L,MELE E J.Quantum spin Hall effect in graphene[J].Physical Review Letters,2005,95:226801.
- [13] KANE C L,MELE E J.Z2 topological order and the quantum spin Hall effect[J].Physical Review Letters,2005,95:146802.
- [14] BERNEVIG B A,HUGES T L,ZHANG S C.Quantum spin Hall effect and topologiacal phase transition in Hgte quantum wells[J].Science,2006,314:1757-1761.
- [15] K?NIG M,WIEDMANN S,BRüNE C,et al.Quantum spin Hall insulator state in Hgte quantum wells[J].Science,2007,31:766-770.
- [16] 金国钧.凝聚体中的拓扑量子态[J].物理学进展,2019,39:187-241.JIN G J.Topological quantum states in condensed matter[J].Progress in Physics,2019,39:187-241.(in Chinese)
- [17] YU R,ZHANG W,ZHANG H J,et al.Quantized anomalous Hall effect in magnetic topological insulators[J].Science,2010,329:61-64.
- [18] CHANG C Z,ZHANG J,FENG X,et al.Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator[J].Science,2013,340:167-170.
- [19] FU L,KANE C L,MELE E J.Topological insulators in three dimensions[J].Physical Review Letters,2007,98:106803.
- [20] FU L,KANE C L.Time reversal polarization and a Z2 adiabatic spin pump[J].Physical Review B,2006,74:195312.
- [21] 余睿,方忠,戴希.Z2拓扑不变量与拓扑绝缘体[J].物理,2011,40:462-468.YU R,FANG Z,DAI X.Z2 topological invariant and topological insulators[J].Physics,2011,40:462-468.(in Chinese)
- [22] 张礼,葛墨林.量子力学的前沿问题[M].2版.北京:清华大学出版社,2013.
- [23] ZHANG S C,HANSSON H,KIVELSON S.Effective-field-theory model for the fractional quantum Hall effect[J].Physical Review Letters,1989,62:82-85.
- [24] QI X L,HUGES T L,ZHANG S C.Topological field theory of time-reversal invariant insulators[J].Physical Review B,2008,78 195424.
- [25] QI X L,WU Y S,ZHANG S C.Topological quantization of the spin Hall effect in two-dimensional paramagnetic semiconductors[J].Physical Review B,2006,74,085308.
- [26] SHEN S Q.Topological insulators[M].2nd edition.Berlin:Springer,2017.
- [27] ’t HOOFT G.Magnetic monopoles in unified gauge theories[J].Nuclear Physics B,1974,79:276-284.
- [28] WU T T,YANG C N.Concept of nonintegrable phase factors and global formulation of gauge fields[J].Physical Review D,1975,12:3845-3857.