引力诱导自发辐射机制简介AN INTRODUCTION TO GRAVITY INDUCED SPONTANEOUS RADIATION
王雅坤,曾定方,余洪伟,徐皓,张宏升
摘要(Abstract):
引力诱导自发辐射机制将黑洞看作一个多能级多简并量子系统,因此其辐射蒸发过程的中间态是各种不同质量比黑洞-辐射产物直积态的叠加。由于被作为经典对象看待的黑洞与辐射产物是对这种叠加态部分指标求迹的结果,所以它们之间的纠缠熵在整个辐射过程中拥有先增后减的特征,符合Page曲线的预期。本文对引力诱导自发辐射的基本概念进行了一个普及性介绍同时计算了一个初始简并度为8的黑洞在这种辐射演化下的熵变曲线,得到了晚期Rabi振荡造成的抬头行为相对第一回合增减变化明显被抑制的结果。
关键词(KeyWords): 霍金辐射;信息丢失疑难;引力诱导自发辐射
基金项目(Foundation): 国家自然科学基金NSFC-11875082的支持
作者(Author): 王雅坤,曾定方,余洪伟,徐皓,张宏升
参考文献(References):
- [1] ZENG D F.Resolving the Schwarzschild singularity in both classic and quantum gravities[J].Nucl.Phys.,B917:178-192,arXiv:1606.06178.
- [2] ZENG D F.Schwarzschild Fuzzball and Explicitly Unitary Hawking Radiations[J].Nucl.Phys.B930 (2018) 533-544,arXiv:1802.00675.
- [3] ZENG D F.Information missing puzzle,where is hawking's error?[J].Nucl.Phys.B941 (2018) 665,arXiv:1804.06726.
- [4] ZENG D F.Exact inner metric and microscopic state of AdS3-Schwarzschild BHs[J].Nucl.Phys.B954 (2020) 115001,arXiv:1812.06777.
- [5] ZENG D F.Spontaneous Radiation of Black Holes[J].Nucl.Phys.B977 (2022) 115722,arXiv:2112.12531.
- [6] ZENG D F.Gravitation Induced Spontaneous Radiation[J].arXiv:2207.05158,Nucl.Phys.B990 (2023) 116171,arXiv:2207.05158.
- [7] ZENG D F.Microscopic State of BHs and an Exact One Body Method for Binary Dynamics in General Relativity[J].arXiv:2311.11764,to appear in European Physics Journal C.
- [8] 许天赐,曾定方.黑洞熵的面积律到底特殊在哪里[J].物理与工程,2022,32(4):8-15,63.XU T C,ZENG D F.What's the special of black hole area law entropy[J].Physics and Enginering,2022,32(4):8-15,63.(in Chinese)
- [9] 孙宇轩,曾定方.量子电子的经典轨道和黑洞熵的微观起源[J].物理与工程,2023,44(3):103-114.SUN Y X,ZENG D F.Clasic orbit of quantum electron and the origin of black hole entropy[J].Physics and Enginering,2023,33(3):103-114.(in Chinese)
- [10] MALDACENA J.The Large-N Limit of Superconformal Field Theories and Supergravity[J].International Journal of Theoretical Physics,38 (1999) 1113-1133,arXiv:hep-th/9711200.
- [11] CHOWDHURY B D,PUHM A.Decoherence and the fate of an infalling wave packet:Is Alice burning or fuzzing?[J].Phys.Rev.D88 (2013) 063509,arXiv:1208.2026.
- [12] G.'t Hooft.The firewall transformation for black holes and some of its implications[J].Found Phys.47 (2017) 1503-1542,arXiv:1612.08640.
- [13] G.'t Hooft.The quantum black hole as a theoretical lab,a pedagogical treatment of a new approach[J].arXiv:1902.10469.
- [14] G.'t Hooft.Black Hole Firewalls and Quantum Mechanics[J].arXiv:2401.16890.
- [15] BETZIOS P,GADDAM N,PAPADOULAKI O.The black hole S-Matrix from quantum mechanics[J].J.High Energ.Phys.2016 (2016) 131,arXiv:1607.07885.
- [16] G.'t Hooft.What happens in a black hole when a particle meets its antipode,arXiv:1804.05744.
- [17] G.'t Hooft.What happens in a black hole when a particle meets its antipode,arXiv:1804.05744.
- [18] ENGELHARDT N,WALL A C.Quantum extremal surfaces:holographic entanglement entropy beyond the classical regime[J].J.High Energ.Phys.2015 (2015) 073,arXiv:1408.3203.
- [19] ALMHEIRI A,HARTMAN T,MALDACENA J,et al.The entropy of Hawking radiation[J].Rev.Mod.Phys.93 (2021) 035002,arXiv:2006.06872.
- [20] PAGE D N.Time dependence of Hawking radiation entropy[J].JCAP.2013 (2013) 028,arXiv:1301.4995.
- [21] SCULLY M O,SVIDZINSKY A,UNRUH W.Entanglement in Unruh,Hawking,and Cherenkov radiation from a quantum optical perspective[J].Phys.Rev.Res.4 (2022) 033010.
- [22] JAYNES E T,CUMMINGS F W.Comparison of quantum and semiclassical radiation theories with application to the beam maser[J].Proceedings of the IEEE.51 (1963) 88-109.