用变分量子本征求解器研究量子拉比模型的基态问题SOLVING THE GROUND STATE OF QUANTUM RABI MODEL WITH VARIATIONAL QUANTUM EIGENSOLVER
郝明星,高一波
摘要(Abstract):
在用变分法求解量子系统基态问题的研究中,采用变分量子算法求解基态的研究受到广泛的关注,作为一种量子与经典混合算法的变分量子求解器在其中发挥了重要作用。本文在开源的量子计算模拟器上运行变分量子本征求解器对量子拉比模型在超强耦合区的基态进行了讨论。在3量子比特空间中,我们采用标准二进制编码方式将量子拉比模型中的算符和量子态进行编码,并且在哈密顿量变分拟设构造的量子电路上计算得到哈密顿量最小平均值(基态能量)。最后,通过将变分量子本征求解器的计算结果与经典数值模拟方法得到的精确值进行对比,我们讨论了变分量子本征求解器的计算精度与量子电路的消耗资源(量子比特数目)以及耦合强度之间的依赖关系。
关键词(KeyWords): 量子拉比模型;变分量子本征求解器;量子计算模拟器
基金项目(Foundation): 国家自然科学基金(11674017)
作者(Author): 郝明星,高一波
参考文献(References):
- [1] JOHANSSON J R,NATION P D,NORI F.Qutip 2:A python framework for the dynamics of open quantum systems[J].Computer Physics Communications,2013,184(1234):1234-1240.
- [2] FEYNMAN R P.Simulating physics with computers[J].International Journal of Theoretical Physics,1982,21(6-7):467-488.
- [3] SHOR P W.Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer[J],SIAM Journal on Computing,1997,26(5):1484-1509.
- [4] GROVER L K.Quantum mechanics helps in searching for a needle in a haystack[J].Physical Review Letters,1997,79(2):325-328.
- [5] PARRISH R M,HOHENSTEIN E G,MCMAHON P L,et al.Quantum computation of electronic transitions using a variational quantum eigensolver[J].Physical Review Letters,2019,122 (23):230401.
- [6] WANG Z,HADFIELD S,ZHANG J,et al.Quantum approximate optimization algorithm for maxcut:A fermionic view[J].Physical Review A,2018,97(2):1-13.
- [7] YAMAMOTO Y,LELEU T,GANGULI S,et al.Coherent Ising machines-quantum optics and neural network perspectives[J].Applied Physics Letters,2020,117(16):160501.
- [8] FINNILA A B,GOMEZ M A,SEBENIK C,et al.Quantum annealing:a new method for minimizing multidimensional functions[J].Chemical Physics Letters,1994,219(5):343-348.
- [9] MCCLEAN J R,ROMERO J,BABBUSH R,et al.The theory of variational hybrid quantum-classical algorithms[J].New Journal of Physics,2016,18(2):023023.
- [10] BAUER B,BRAVYI S,MOTTA M,et al.Quantum algorithms for chemistry and quantum materials science[J].Chemical Reviews,2020,120(22):12685-12717.
- [11] PERUZZO A,MCCLEAN J,SHADBOLT P,et al.A variational eigenvalue solver on a quantum processor[J].Nature Communications,2013,5(1):4213.
- [12] HEMPEL C,MAIER C,ROMERO J,et al.Quantum chemistry calculations on a trapped-ion quantum simulator[J].Physical Review X,2018,8(3):031022.
- [13] O'MALLEY P,BABBUSH R,KIVLICHAN I D,et al.Scalable quantum simulation of molecular energies[J].Physical Review X,2016,6(3):031007.
- [14] NIELSEN M A,CHUANG I L.Quantum computation and quantum information[M].Cambridge University Press,2000.
- [15] JORDAN P,WIGNER E.über das Paulische ?quivalenzverbot[J].Zeitschrift für Physik,1928,47:631-651.
- [16] FELLNER M,MESSINGER A,ENDER K,et al.Applications of universal parity quantum computation[J].Physical Review A,2022,106(4):042442.
- [17] TRANTER A,SOFIA S,SEELEY J.The Bravyi-Kitaev transformation:properties and applications[J].International Journal of Quantum Chemistry,2015,115(9):1431-1441.
- [18] SETIA K,WHITFIELD J D.Bravyi-Kitaev superfast simulation of electronic structure on a quantum computer[J].The Journal of Chemical Physics,2018,148(16):164104.
- [19] FLETCHER R,REEVES C M.Function minimization by conjugate gradients[J].The Computer Journal,1964,7(2):149-154.
- [20] ANDREI N.Another hybrid conjugate gradient algorithm for unconstrained optimization[J].Numerical Algorithms,2008,47(2):143-156.
- [21] DAI Y H,YUAN Y.An efficient hybrid conjugate gradient method for unconstrained optimization[J].Annals of Operations Research,Springer,2001,103(1):33-47.
- [22] MA Y,ZHANG N,LI J.Improved sequential least squares programming-driven feasible path algorithm for process optimization[J].Computer Aided Chemical Engineering,2022,51:1279-1284.
- [23] POWELL M J D.A direct search optimization method that models the objective and constraint functions by linear interpolation[J].Advances in Optimization and Numerical Analysis,1994,275:51-67.
- [24] SPALL J C.An overview of the simultaneous perturbation method for efficient optimization[J].Johns Hopkins APL Technical Digest,1998,19(4):482-492.
- [25] RABI I I.On the process of space quantization[J].Physical Review,1936,49(4):324-328.
- [26] RABI I I.Space quantization in a gyrating magnetic field[J].Physical Review,1937,51(8):652-654.
- [27] JAYNES E T,CUMMINGS F W.Comparison of quantum and semiclassical radiation theories with application to the beam maser[J].IEEE,1963,51(1):89-109.
- [28] KOCKUM F A,MIRANOWICZ A,DELIBERATO S,et al.Ultrastrong coupling between light and matter[J].Nature Review Physics,2019,1(1):19-40.
- [29] SAWAYA N P,MENKE T,KYAW T H,et al.Resource-efficient digital quantum simulation of d-level systems for photonic,vibrational,and spin-s Hamiltonians[J].NPJ Quantum Information,2020,6(1):1-13.
- [30] WIERSEMA R,ZHOU C,SEREVILLE Y,et al.Exploring entanglement and optimization within the Hamiltonian variational ansatz[J].Physical Review X,2020,1(2):020319.
- [31] WECKER D,HASTINGS M B,TROYER M.Progress towards practical quantum variational algorithms[J].Physical Review A,2015,92(4):042303.
- [32] NAKANISHI K M,MITARAI K,FUJII K.Subspace-search variational quantum eigensolver for excited states[J].Physical Review Research,2019,1(3):033062.