基于学习投入的混合式教学预警模型研究——以大学物理为例RESEARCH ON EARLY WARNING MODEL OF HYBRID TEACHING BASED ON LEARNING ENGAGEMENT——TAKING COLLEGE PHYSICS AS AN EXAMPLE
李亚楠,张睿
摘要(Abstract):
建设高质量教育评价体系是国家的政策导向和重点要求。作为教育评价体系的重要环节,学习预警可以帮助学生和教师及时了解学情,调整教学与学习策略,真正做到以学为中心的教学方式。本文根据大学物理混合式教学数据建立结构方程模型,将教学数据分为行为投入和认知投入两类,并通过主成分分析对学习投入进行测算。在学习投入模型的基础上,本文构建了学习效果评价方式,并进一步探讨了不同预警模型的性能。从结果上看,决策树C5.0构建的学习预警模型召回率等指标优于决策树CART、线性回归、支持向量机以及K-means算法构建的学习预警模型,能更好地预测学生是否及格。
关键词(KeyWords): 学习预警;混合式教学;学习投入;结构方程模型
基金项目(Foundation): 2020年度上海市教育科研市级课题“大学物理交互式电子书设计与教学实践”项目(编号:C20122)
作者(Author): 李亚楠,张睿
参考文献(References):
- [1] 光明日报.“十四五”:高等教育立足当下更将引领未来[EB/OL].http://www.moe.gov.cn/jyb_xwfb/s5147/202011/t20201123_501229.html,2020-11-22.
- [2] 教育部.中国教育概况——2019年全国教育事业发展情况[EB/OL].http://www.moe.gov.cn/jyb_sjzl/s5990/202008/t20200831_483697.html,2020-08-31.
- [3] 新华社.中共中央国务院印发《深化新时代教育评价改革总体方案》[EB/OL].http://www.gov.cn/zhengce/2020-10/13/content_5551032.htm,2020-10-13.
- [4] 唐婧.数据挖掘算法在计算机教学成绩预测中的应用[J].信息与电脑(理论版),2017(18):34-36.TANG J.The application of data mining algorithm in computer teaching prediction[J].Information and computer (theoretical Edition),2017(18):34-36.(in Chinese)
- [5] HU Y H,LO C L,SHIH S P.Developing early warning systems to predict students' online learning performance[J].Computers in Human Behavior 36,469-478.doi:10.1016/j.chb.2014.04.002.
- [6] MISHRA T,KUMAR D,GUPTA S.Mining Students' Data for Prediction Performance[C].Proceedings of the 2014 Fourth International Conference on Advanced Computing & Communication Technologies.IEEE,2014.
- [7] GURULER H,ISTANBULLU A.Modeling Student Performance in Higher Education Using Data Mining[M].Berlin:Springer International Publishing,2014.
- [8] 王磊,赵芳芳.高等职业院校分类招考背景下的学生学业早期预警研究[J].中国职业技术教育,2017(32):70-74.WANG L,ZHAO F F.Research on students' academic early warning under the background of classified recruitment of Higher Vocational Colleges[J].China Vocational and technical education,2017(32):70-74.(in Chinese)
- [9] 王改花,傅钢善.网络学习行为与成绩的预测及学习干预模型的设计[J].中国远程教育,2019,No.529(2):43-52.WANG G H,FU G S.Prediction of E-learning behavior and achievement and design of learning intervention model[J].China distance education,2019,No.529(2):43-52.(in Chinese)
- [10] 崔仁桀.数据挖掘在学生专业成绩预测上的应用[J].软件,2016,37(1):24-27.CUI R J.Application of data mining in students' professional achievement prediction[J].Software,2016,37(1):24-27.(in Chinese)
- [11] 倪士光,伍新春.学习投入:概念、测量与相关变量[J].心理研究,2011,4(01):81-87.NI S G,WU X C.Learning engagement:The conception,measurement and relevant variables[J].Psychological research,2011,4(1):81-87.(in Chinese)
- [12] 孙科,李晓茜.基于Citespace的大学生学习投入研究可视化分析[J].高等农业教育,2019(4):33-39.SUN K,LI X X.Visualization analysis of College Students' learning input based on CiteSpace[J].Higher agricultural education,2019(4):33-39.(in Chinese)
- [13] FREDRICKS J A,BLUMENFELD P C,PARIS A H.School engagement:Potential of the concept,state of the evidence[J].Review of Educational Research,2004,74(1):59-109.
- [14] 张娜.国内外学习投入及其学校影响因素研究综述[J].心理研究,2012,5(2):83-92.ZHANG N.Academic engagement:concepts,measurement,and factors[J].Psychological research,2012,5(2):83-92.(in Chinese)
- [15] BOKHOVE C,MUIJS D.Can we reliably compare student engagement between universities?Evidence from the United Kingdom Engagement Survey[J].Oxford Review of Education,2019,45(3):417-434.
- [16] COATES H.Development of the Australasian survey of student engagement (AUSSE)[J].Higher Education,2010,60(1):1-17.
- [17] 袁梦.学生学习投入的影响因素及提升路径[J].教学与管理,2020(15):72-74.YUAN M.Influencing factors and promotion path of students' learning investment[J].Teaching and management,2020(15):72-74.(in Chinese)
- [18] 李爽,王增贤,喻忱,等.在线学习行为投入分析框架与测量指标研究——基于LMS数据的学习分析[J].开放教育研究,2016,22(2):77-88.LI S,WANG Z X,YU C,et al.Mining LMS data for behavior engagement indicators in online learning[J].Open education research,2016,22(2):77-88.(in Chinese)
- [19] 武法提,张琪.学习行为投入:定义、分析框架与理论模型[J].中国电化教育,2018(1):35-41.WU F T,ZHANG Q.Learning behavior engagement:Definition,analytical framework and theoretical model[J].China audio visual education,2018(1):35-41.(in Chinese)
- [20] 马婧,韩锡斌,程建钢.促进学习投入的混合教学活动设计研究[J].清华大学教育研究,2018,39(3):67-75+92.MA J,HAN X B,CHENG J G.Research on the design of mixed teaching activities to promote learning investment[J].Educational research of Tsinghua University,2018,39(3):67-75+92.(in Chinese)
- [21] 余胜泉,路秋丽,陈声健.网络环境下的混合式教学——一种新的教学模式[J].中国大学教学,2005(10):50-56.YU S Q,LU Q L,CHEN S J.Hybrid Teaching under the network environment—A new teaching model[J].China University teaching,2005(10):50-56.(in Chinese)
- [22] 何克抗.从Blending Learning看教育技术理论的新发展[J].国家教育行政学院学报,2005(9):37-48+79.HE K K.New development of educational technology theory from blending learning[J].Journal of National Institute of educational administration,2005(9):37-48+79.(in Chinese)
- [23] APPLETON J J,CHRISTENSON S L,FURLONG M J.Student engagement with school:Critical conceptual and methodological issues of the construct[J].Psychology in the Schools,2010,45(5):369-386.
- [24] ELLEN A,JENNIFER M S.Developmental Dynamics of Student Engagement,Coping,and Everyday Resilience[M].New York:Springer US,2012.
- [25] FINN J D,ZIMMER K S.Student engagement:What is it?Why does it matter?[J].Springer US,2012.
- [26] 陆璟.PISA学习参与度评价[J].上海教育科研,2009(12):4-9.LU J.PISA learning participation evaluation[J].Shanghai Education and scientific research,2009(12):4-9.(in Chinese)
- [27] RAHAL A,ZAINUBA M.Improving students' performance in quantitative courses:The case of academic motivation and predictive analytics[J].International Journal of Management Education,2016,14(1):8-17.
- [28] 王红梅,张琪,黄志南.开放学习环境中学习行为投入与认知投入的实证研究[J].现代教育技术,2019,29(12):48-54.WANG H M,ZHANG Q,HUANG Z N.Empirical study of learning behavior engagement and cognitive engagement in open learning environment[J].Modern educational technology,2019,29(12):48-54.(in Chinese)
- [29] 周松林,茆美琴,苏建徽.基于主成分分析与人工神经网络的风电功率预测[J].电网技术,2011,35(9):128-132.ZHOU S L,MAO M Q,SU J H.Wind power prediction of wind power based on principal component analysis and artificial neural network[J].Power Grid Technology,2011,35(9):128-132.(in Chinese)
- [30] 高桥信.漫画统计学之因子分析[M].北京:科学出版社,2000.
- [31] 吴明隆.结构方程模型[M].重庆:重庆大学出版社,2010.
- [32] 毕胜.用K均值法对自考考生流失的研究[J].计算机时代,2008(5):48-51.BI S.Study on the loss of self-taught candidates by K-means method[J].Computer age,2008(5):48-51.(in Chinese)
- [33] 巩吉璋.决策树分类算法在银行个人信用评级中的应用[D].暨南大学,2008.
- [34] 周媛,韩彦凤.混合学习活动中学习者学习投入的研究[J].电化教育研究,2018,39(11):99-105.ZHOU Y,HAN Y F.Research on learners' learning engagement in blended-learningactivities[J].Audio visual education research,2018,39(11):99-105.(in Chinese)
- [35] 龚艺,刘波,谭明杰,等.远程教育中在线学习投入与学习绩效关系的实证研究[J].成人教育,2018,38(6):24-28.GONG Y,LIU B,TAN M J,et al.Empirical study of the relationship between online learning engagement and academic performance in distance education[J].Adult education,2018,38(6):24-28.(in Chinese)
- [36] 张晓峰,李明喜,俞建慧,等.面向学习云空间的认知投入量化研究[J].中国远程教育,2020(5):18-28+76-77.ZHANG X F,LI M X,YU J H,et al.Quantifying cognitive engagement in cloud-based learning space[J].China Distance Education,2020(5):18-28+76-77.(in Chinese)
- [37] 张志祯,齐文鑫.教育评价中的信息技术应用:赋能、挑战与对策[J].中国远程教育,2021(3):1-11+76.ZHANG Z Z,QI W X.Information technology in educational assessment:Empowerment,challenges and solutions[J].China Distance Education,2021(3):1-11+76.(in Chinese)
- [38] 黄静宜.CIPP课程评价模式简析[J].职业技术教育,2005,26(10):38-39.HUANG J Y.Comment of CIPP pattern of curriculum evaluation[J].Vocational and Technical Education,2005,26(10):38-39.(in Chinese)