CUPT 2019循环摆研究RESEARCH ON CIRCULAR PENDULUM IN CUPT 2019
钟粤文,刘姝含,孙宇飞,房毅
摘要(Abstract):
2019年CUPT第14题"循环摆"描述了一个在生活中常见却物理原理深刻的现象。所谓循环,指的能够旋转一周以上,约定轻物体绕杆旋转一圈以上,就形成了循环摆。实验中观察循环摆的轨迹,发现其必然会过渡到渐开线。利用拉格朗日方程可得描述轻物运动的非线性常微分方程组,据此方程组分析过渡到渐开线时刻的各物理量的变化规律、确定形成循环摆的判据;同时,通过实验探究不同初始条件下对过渡到渐开线时刻的各物理量的影响,并与理论分析所得比较。结果表明,随着初始条件的改变,过渡到渐开线时:轻物绕杆角速度与轻物到杆的线长的变化趋势总是相反,且两者随着初始角度的改变必有一极值,而该极值总是在相同的初始角度下取得;轻物与水平面的夹角总与初始条件正相关。
关键词(KeyWords): 循环摆;渐开线;数值模拟;广义坐标;拉格朗日方程
基金项目(Foundation): 华东理工大学绿色工程基金项目资助
作者(Author): 钟粤文,刘姝含,孙宇飞,房毅
参考文献(References):
- [1] 刘美玲,徐晶.探究循环摆中各变量对环绕圈数的影响[J].青年与社会,2019(29):236-237.LIU M L,XU J.Exploring the influence of various variables in the circular pendulum on the number of circles[J].Youth and Society,2019(29):236-237.(in Chinese)
- [2] 漆安慎,杜蝉英.力学[M].2版.北京:高等教育出版社,2000.
- [3] 李海龙,刘海燕.第二类拉格朗日方程在无初速释放动力学问题中的应用[J].力学与实践,2019,41(5):607-611.LI H L,LIU H Y.The application of Lagrange equations of the second kind in the kinetics of release without initial velocity[J].Mechanics and Practice,2019,41(5):607-611.(in Chinese)
- [4] 曾昭纬.静摩擦力产生向心加速度的演示[J].物理实验,1984(4):36.ZENG Z W.Demonstration of centripetal acceleration produced by static friction[J].Physics Experiment,1984(4):36.(in Chinese)
- [5] 薛克宗,薛克宗.滑动摩擦力分析[J].力学与实践,1991,13(4):61-62.XUE K Z,XUE K Z.Analysis of sliding friction force[J].Mechanics in Engineering,1991,13(4):61-62.(in Chinese)
- [6] LARS H.Hypoelliptic second order differential equations[J].Acta Mathematica,1967,119(1):147-171.
- [7] 李佳迅,邓邦林,胡志刚,等.基于分析力学的方位径向摆运动特性研究[J].力学与实践,2019,41(5):534-542.LI J X,DENG B L,HU Z G,et al.Research on the motion characteristics of azimuth radial pendulum based on analytical mechanics[J].Mechanics and Practice,2019,41(5):534-542.(in Chinese)
- [8] 孙杜杜,舒适.求解三维高次拉格朗日有限元方程的代数多重网格法[J].计算数学,2005,27(1):101-112.SUN D D.Comfortable.Algebraic multigrid method for solving three-dimensional high-order Lagrange finite element equations[J].Computational Mathematics,2005,27(1):101-112.(in Chinese)
- [9] 丁光涛.拉格朗日力学逆问题和量纲分析[J].安徽师范大学学报(自然科学版),2018,41(1):1-4.DING G T.Inverse problem of Lagrange mechanics and dimensional analysis[J].Journal of Anhui Normal University (Natural Science Edition),2018,41(1):1-4.(in Chinese)
- [10] 杨卫东,洪林.基于拉格朗日方法的U型滑道约束链动力学研究[J].天津理工大学学报,2017,33(5):35-39.YANG W D,HONG L.Research on the dynamics of the U-shaped slide restraint chain based on the Lagrange method[J].Journal of Tianjin University of Technology,2017,33(5):35-39.(in Chinese)
- [11] 金鑫,满春涛.半球谐振陀螺的拉格朗日力学建模方法[J].哈尔滨理工大学学报,2017,22(1):41-47.JIN X,MAN C T.Lagrange mechanical modeling method of hemispherical resonator gyroscope[J].Journal of Harbin University of Science and Technology,2017,22(1):41-47.(in Chinese)
- [12] 丁光涛.导出变系数非线性动力学系统拉格朗日函数的两种方法[J].动力学与控制学报,2017,15(1):10-14.DING G T.Two methods for deriving Lagrange functions of variable coefficient nonlinear dynamic systems[J].Journal of Dynamics and Control,2017,15(1):10-14.(in Chinese)
- [13] 罗操群,孙加亮,文浩,等.多刚体系统分离策略及释放动力学研究[J].力学学报,2020,52(2):503-513.LUO C Q,SUN J L,WEN H,et al.Research on separation strategy and release dynamics of multi-rigid body systems[J].Acta Mechanica Sinica,2020,52(2):503-513.(in Chinese)
- [14] 董全林,范运强,贾志军,等.基于拉格朗日方法的缠绕复合运动动力学方程[J].机械设计与制造,2014,(2):76-79.DONG Q L,FAN Y Q,JIA Z J,et al.Dynamic equation of winding compound motion based on Lagrange method[J].Machine Design and Manufacturing,2014,(2):76-79.(in Chinese)
- [15] 林开亮,王兢.求解常系数线性微分方程的代数方法[J].内蒙古师范大学学报(自然科学汉文版),2019,48(6):577-582.LIN K L,WANG J.Algebraic method for solving linear differential equations with constant coefficients[J].Journal of Inner Mongolia Normal University (Natural Science Chinese Edition),2019,48(6):577-582.(in Chinese)
- [16] 叶康生,邱廷柱.二阶非线性常微分方程边值问题有限元p型超收敛计算[J].工程力学,2019,36(12):7-14.YE K S,QIU T Z.Finite element p-type superconvergence calculation for boundary value problems of second-order nonlinear ordinary differential equations[J].Engineering Mechanics,2019,36(12):7-14.(in Chinese)
- [17] 苏肖肖.一类带非线性边界条件的奇异二阶常微分方程正解的存在性[J].四川大学学报(自然科学版),2019,56(6):1019-1025.SU X X.The existence of positive solutions for a class of singular second-order ordinary differential equations with nonlinear boundary conditions[J].Journal of Sichuan University (Natural Science Edition),2019,56(6):1019-1025.(in Chinese)
- [18] 师小侠.基于二阶常微分方程的曲线拟合法[J].内江科技,2019,40(11):36,33.SHI X X.Curve fitting method based on second-order ordinary differential equations[J].Neijiang Science and Technology,2019,40(11):36,33.(in Chinese)