懂几何者,在物理学中无往而不利GEOMETRY IS BENEFICIAL TO ALL PHYSICS STUDENTS AND RESEARCHERS
刘全慧
摘要(Abstract):
统一物理学中四个基本相互作用的理论基础是规范场论,即一种近代几何理论,一些物理学理论的建立,借助的是并不深奥的微分几何,可以说物理学离不开几何。但是大学物理专业的课程中,极少有微分几何的位置。把导数引入几何中即微分几何,最简单的微分几何即古典微分几何,仅仅包括曲线与曲面论,而且这些知识非常容易入门和掌握。本文在量子力学和热力学课程的基本内容中撷取了几个点,指出它们和曲面论微分几何的联系,包括动量算符、量子态在曲面上的平行移动、自旋和空间拓扑结构、热力学函数曲面和尚在发展中的热力学几何等。说明如下道理:不管是物理的学习者还是研究者,几何能使他们独辟蹊径,无往而不利。
关键词(KeyWords): 量子力学;热力学;微分几何
基金项目(Foundation): 国家自然科学基金(11675051)
作者(Author): 刘全慧
参考文献(References):
- [1] LIU Q H,XIAO S F.A self-adjoint decomposition of the radial momentum operator[J].Int.J.Geom.Meth.Mod.Phys.,2015,12:1550028.
- [2] LI Z,YANG X,LIU Q H.Curvature-induced noncommutativity of two different components of momentum for a particle on a hypersurface[J].Commun.Theor.Phys.,2021,73:025104.
- [3] LIU Q H,TANG L H,XUN D M.Geometric momentum:The proper momentum for a free particle on a two-dimensional sphere[J].Phys.Rev.A.,2011,84:042101.
- [4] LIAN D K,HU L D,LIU Q H.Geometric potential and Dirac quantization[J].Annalen der Physik,2018,530:1700415.
- [5] WEINBERG S.Lectures on quantum mechanics[M].2nd ed.Cambridge:Cambridge University Press,2015.
- [6] KLEINERT H,SHABANOV S V.Proper Dirac quantization of a free particle on a D-dimensional sphere[J].Phys.Lett.A,1997,232:327-332.
- [7] LIU Q H.Geometric momentum for a particle constrained on a curved hypersurface[J].J.Math.Phys.,2013,54:122113.
- [8] LIU Q H,LI Z,ZHOU X Y,et al.Generally covariant geometric momentum,gauge potential and a Dirac fermion on a two-dimensional sphere[J].Euro.Phys.J.C.,2019,79:712.
- [9] 中国物理学会期刊网,何祚庥[R/OL].http://www.cpsjournals.cn/zgwlxh-upload/CN/column/何祚庥.pdf.
- [10] MULOP N,YUSOF K M,TASIR Z.A review on enhancing the teaching and learning of thermodynamics[J].Procedia-Social and Behavioral Sciences,2012,56:703-712.
- [11] RUPPEINER G.Riemannian geometry in thermodynamic fluctuation theory[J].Rev.Mod.Phys.,1995,67:605-659.
- [12] WEI S W,LIU Y X,MANN R B.Novel dual relation and constant in Hawking-Page phase transitions[J].Phys.Rev.D,2020,102:104011.