玻恩-黄昆方程的历史回顾——纪念黄昆先生诞辰100周年HISTORICAL SURVEY ON BORN-HUANG EQUATIONS:IN MEMORY OF 100 ANNIVERSARY OF PROFESSOR KUN HUANG' BIRTHDAY
王炳燊,葛惟昆
摘要(Abstract):
为纪念黄昆先生诞辰100周年,本文回顾了玻恩-黄昆方程的历史背景、物理意义以及极化激元这一概念的产生、发展和深远影响,阐述了黄昆在固体物理学发展中的杰出贡献。谨以此文致敬黄昆先生。
关键词(KeyWords): 玻恩-黄昆方程;迟滞效应;光学声子;晶体极化强度;介电函数;色散;激子;极化激元
基金项目(Foundation):
作者(Author): 王炳燊,葛惟昆
参考文献(References):
- [1] HUANG K.On the quantum-mechanical treatment of the optics of crystal lattices[J].Mathematical Proceedings of the Cambridge Philosophical Society,1949,45(3):452-462.HUANG K.Lattice vibrations and optical waves in ionic crystals[J].Nature,1951,167:779-780.HUANG K.On the interaction between the radiation fiend and ionic crystals[J].Proceedings of the Royal Society A,1951,208(1094):352-365.
- [2] LYDDANE R H,HERZFELD K F.Lattice vibrations in polar crystals[J].Physical Review,1938,54:846-861.LYDDANE R H,HERZFELD K F,SACHS R G.The electric fields in vibrating polar crystals[J].Physical Review1940,58:1008-1009.
- [3] BORN M,HUANG K.Dynamic theory of crystal lattice[M].London:Oxford University Press,1954.波恩,黄昆.晶格动力学理论[M].葛惟锟,贾惟义,译.北京:北京大学出版社,1989.
- [4] HUANG K,RHYS A.Theory of light absorption and nonradiative transitions in F-centres[J].Proceedings of the Royal Society A,1950,204:406-423.
- [5]黄昆.无辐射跃迁的绝热近似和静态耦合理论[J].中国科学,1980(10):949-954.
- [6] BURNSTEIN E.Proceeding of the 17th conference on Raman spectroscopy,International Steering Committe ICORS[M].New York:John Wile&Sons Ltd.,2000:40.HUANG K.X-ray reflexions from dilute solid solutions[J].Proceedings of the Royal Society A,190(1020):102-117.
- [7] HOPFIEND J J.Theory of the contribution of excitons to the complex dielectric constant of crystals[J].Physical Review,1958,(112):1555-1567.
- [8]С.И.Пекар,ЖЭТФТ,PEKAR S I.The theory of electromagnetic waves in a crystal in which excitons are produced[J].Sov.Phys.JETP,1958(6):785.
- [9] HENRY C H,HOPFIELD J J.Raman scattering by polaritons[J].Physical Review Letters,1965,15(25):964-966.
- [10] BENDOW B,BIRMAN J L.Relationship between adiabatic elastic constants[J].Physical Review B,1971,4(2):1678-1686.
- [11] BRENIG W,ZEYLER R,BIRMAN J L.Spatial dispersion effects in resonant polariton scatteringⅡ.Resonant brillouin scattering[J].Physical Review B,1972,6(12):4617-4622.
- [12] ULBRICH R G,WEISBUSH C.Resonant brillouin scattering of excitonic polaritons in Gallium Arsenide[J].Physical Review Letters,1977,38(15):865-868.
- [13] PEKAR S I.Additional light waves in crystals near the region of exciton absorption and luminescence[J].Journal of Luminescence,1979,20(4):333-336.
- [14] HUANG K,ZHU B F.Dielectric continuum model and Frhlich interaction in superlattices[J].Physical Review B.1988,38(18):13377-13386.
- [15] BURNSTEIN E,MARTINI F.Introductory remarks on polaritons[M].New York:Pergamon Press,1974:1-4.
- [16] FROHLICH H.Interaction of electrons with lattice vibrations[J].Proceedings of the Royal Society A,1939,215(1122):291-198.
- (1)事实上黄先生的这一工作在公开发表之前,先发表在一个内部报告上:K.Huang, The Phenomenological equations Motion for Ionic Crystal Lattices,E.R.A.Report(1950),Ref.L/T239)。另外乌克兰科学家К.Б.Толпыгоб[5]在1950年也独立提出了相似的理论,但他的工作并未产生广泛的影响。
- (1)严格来讲,在晶格动力学中,只有在Brillioun区高对称方向,纵模和横模才可以完全分开。但在长波情况下,晶体完全可以用连续介质来描述,这一点在黄昆先生的原始文章中已经说明。在严格意义上,介电函数和介电屏蔽也分为纵向和横向,但当波矢趋于零时,两者是相等的,因此本文中不再区分。此外,黄昆方程中虽然没有包括由于声子散射导致的声子寿命和谱线展宽,但这个效应很容易加入方程中以便与实验比较,在此不再详述。
- (2)polariton一般翻译成极化激元,有人提议翻译成电磁耦合子,黄先生自己在私下则表示应当称为色散子,因为它完整地描述了固体的色散。
- (1)介电函数理论现代形式,即动力学非局域介电矩阵,其中微观场和宏观场的联系是其在倒格子空间的非对角元来体现的,而黄昆方程得出的介电函数,通过高频介电常数和静态介电常数和纵横光学声子频率,完美地描述了声子态对长波下宏观介电函数的贡献,而不用去关心宏观场与微观场关系的细节。而在实际问题中,人们只会涉及长波下宏观介电函数。感兴趣的读者可以参看有关的文献。