第三代半导体Ⅲ族氮化物的物理与工程——从基础物理到产业发展的典范THE PHYSICS AND ENGINEERING IN Ⅲ-NITRIDE SEMICONDUCTORS——A SUCCESSFUL MODEL OF COMBINATION OF BASIC RESEARCH AND COMMERCIALIZATION
荣新,李顺峰,葛惟昆
摘要(Abstract):
以氮化镓(GaN)为代表的Ⅲ族氮化物属于宽禁带半导体,即通常所谓"第三代"半导体材料。作为Si、Ge以及传统Ⅲ-Ⅴ族化合物半导体之后的新一代半导体材料,GaN具有更大的禁带宽度、更高的击穿电场、更稳定的物理化学性质等优异特性,已经成为半导体研究极为重要的领域和国家重大研究方向。尽管Ⅲ族氮化物的晶体质量与传统半导体材料相比仍然有很大差距,但并不妨碍Ⅲ族氮化物及其量子结构在光电器件及电子器件中的广泛应用,围绕GaN及其他相关氮化物半导体的研究和开发,在物理与工程方面都具有极为特殊的意义,是基础物理研究和产业化应用结合的典范。
关键词(KeyWords): Ⅲ族氮化物;发光二极管;半导体技术;产业化;物理与工程的结合
基金项目(Foundation): 国家自然科学基金项目(批准号:61376060,61674010,61704003);; 广东省科技计划项目(批准号:2014B090905002,2014A050503005);; 东莞市国际合作项目(批准号:2013508102006)
作者(Author): 荣新,李顺峰,葛惟昆
参考文献(References):
- [1]Amano H,et al.Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer[J].Appl.Phys.Lett.1986,48:353.
- [2]Amano H,et al.P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation(LEEBI)[J].Jpn.J.Appl.Phys.1989,28(12):L2112-L2114.
- [3]Nakamura S.GaN growth using GaN buffer layer[J].Jpn.J.Appl.Phys.1991,30(10):L1705-L1707.
- [4]Nakamura S,et al.Thermal annealing effects on p-type Mgdoped GaN films[J].Jpn.J.Appl.Phys.1992,31(2B):L139-L142.
- [5]Popular Information on the Nobel Prize in Physics 2014[EB/OL].[2017-06-26].http://www.nobelprize.org.
- [6]葛惟昆.2014年诺贝尔物理学奖的启示[J].物理与工程,2014,24(6):3-8.Ge W.2014NobelPrize in Physics Enlightenment[J].Physics and Engineering 2014,24(6):3-8.(in Chinese)
- [7]Ambacher O,et al.Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in Nand Ga-face AlGaN/GaN heterostructures[J].J.Appl.Phys.1999,85:3222-3233.
- [8]Fritsch D,et al.Band-structure pseudopotential calculation of zinc-blende and wurtzite AlN,GaN,and InN[J].Phys.Rev.B 2003,67:235205.
- [9]Wang X,et al.Molecular beam epitaxy growth of GaN,AlN and InN[J].Prog.Cryst.Growth Charact.Mater.2004,48:42-103.
- [10]Cho A.Morphology of epitaxial growth of GaAs by a molecular beam method:the observation of surface structures[J].J.Appl.Phys.1970,41:2780-2786.
- [11]陈伟超等.GaN基发光二极管衬底材料的研究进展[J].物理学报,2014,63(6):068103.Chen W,et al.Research progress of substrate materials used for GaN-Based light emitting diodes[J].Acta Physica Sinica 2014,63(6):068103.(in Chinese)
- [12]Doppalapudi D,et al.Chapter 2-Epitaxial growth and structure ofⅢ-Ⅴnitride thin films[M].ISBN:9780125129084.
- [13]Strite S,et al.GaN,AlN,and InN:a review[J].J.Vac.Sci.Technol.B 1992,10:1237-1266.
- [14]Akiyama M,et al.Growth of GaAs on Si by MOVCD[J].J.Cryst.Growth 1984,68(1):21-26.
- [15]Amano H.Nobel Lecture:growth of GaN on sapphire via low-temperature deposited buffer layer and realization of ptype GaN by Mg doping followed by low-energy electron beam irradiation[J].Rev.Mod.Phys.2015,87:1133-1138.
- [16]Li S,et al.Nitrogen-polar core-shell GaN light-emitting diodes grown by selective area metalorganic vapor phase epitaxy[J].Appl.Phys.Lett.2012,101:032103.
- [17]Chichibu S,et al.Origin of defect-insensitive emission probability in In-containing(Al,In,Ga)N alloy semiconductors[J].Nat.Mater.2006,5:810-816.
- [18]News on CREE website[EB/OL].[2017-06-26].http://www.cree.com/news-media/news/article/cree-first-to-break-300-lumens-per-watt-barrier.
- [19]Morko9 H.Handbook of Nitride semiconductors and devices[M].Weiheim:Wiley-VCH,2008.
- [20]Xu K,et al.Progress in bulk GaN growth[J].Chin.Phys.B 2015,24:066105.
- [21]Krames M,et al.GaN-on-GaN platform removes cost/performance tradeoffs in LED lighting[J].Laser Focus World 2013,49(9):37-40.
- [22]Nam K,et al.Mg acceptor level in AlN probed by deep ultraviolet photoluminescence[J].Appl.Phys.Lett.2003,83:878.
- [23]Fritze S,et al.High Si and Ge n-type doping of GaN doping—limits and impact on stress[J].Appl.Phys.Lett.2012,100:122104.
- [24]Van de Walle C,et al.First-principles calculations for defects and impurities:applications toⅢ-nitrides[J].J.Appl.Phys.2004,95:3851.
- [25]Neugebauer J,et al.Gallium vacancies and the yellow luminescence in GaN[J].Appl.Phys.Lett.1996,69:503.
- [26]Ho I,et al.Solid phase immiscibility in GaInN[J].Appl.Phys.Lett.1996,69:2701-2703.
- [27]Liu S,et al.Temperature-controlled epitaxy of InxGa1-xN alloys and their band gap bowing[J].J.Appl.Phys.2011,110:113514.
- [28]Davydov V,et al.Absorption and emission of hexagonal InN.Evidence of narrow fundamental band gap[J].Phys.Stat.Sol.B 2002,229:R1-R3.
- [29]Wu J,et al.Unusual properties of the fundamental band gap of InN[J].Appl.Phys.Lett.2002,80:3967-3969.
- [30]Wu J,et al.Small band gap bowing in In1-xGaxN alloys[J].Appl.Phys.Lett.2002,80:4741-4743.
- [31]Davidson J,et al.Photoluminescence studies of InGaN/GaN multi-quantum wells[J].Semicond.Sci.Technol.2000,15:497-505.
- [32]Wood C,et al.Polarization effects in semiconductors[M].ISBN:9780387368313.
- [33]Rong X,et al.Mid-infrared photoconductive response in AlGaN/GaN step quantum wells[J].Sci.Rep.2015,5:14386.
- [34]Zoroddu A,et al.First-principles prediction of structure,energetics,formation enthalpy,elastic constants,polarization,and piezoelectric constants of AlN,GaN,and InN:Comparison of local and gradient-corrected density-functional theory[J].Phys.Rev.B 2001,64:045208.
- [35]Holmes M,et al.Room-temperature triggered single photon emission from aⅢ-nitride site-controlled nanowire quantum dot[J].Nano Lett.2014,14:982-986.
- [36]Hangleiter A,et al.Suppression of nonradiative recombination byⅤ-shaped pits in GaInN/GaN quantum wells produces a large increase in the light emission efficiency[J].Phys.Rev.Lett.2005,95:127402.
- [37]Taniyasu Y,et al.An aluminium nitride light-emitting diode with a wavelength of 210 nanometres[J].Nature2006,441:325-328.
- [38]Oto T,et al.100mW deep-ultraviolet emission from aluminium-nitride-based quantum wells pumped by an electron beam[J].Nat.Photonics 2010,4:767.
- [39]Tachibana K,et al.Nanometer-scale InGaN self-assembled quantum dots grown by metalorganic chemical vapor deposition[J].Appl.Phys.Lett.1999,74:383-385.
- [40]Notzel R.Self-organized growth of quantum-dot structures[J].Semicond.Sci.Technol.1996,11(10):1365-1379.
- [41]Deshpande S,et al.Electrically driven polarized singlephoton emission from an InGaN quantum dot in a GaN nanowire[J].Nat.Commun.2013,4:1675.
- [42]Tanaka S,et al.Self-assembling GaN quantum dots on Alx Ga1-xN surfaces using a surfactant[J].Appl.Phys.Lett.1996,69:4096.
- [43]Baibich M,et al.Giant Magnetoresistance of(001)Fe/(001)Cr Magnetic Superlattices[J].Phys.Rev.Lett.1988,61:2472.
- [44]Pavan P,et al.Flash memory cells-an overview[J].Proceedings of the IEEE 1997,85:1248-1271.
- [45]Kneissl M,et al.Advances in groupⅢ-nitride-based deep UV light-emitting diode technology[J].Semicond.Sci.Technol.2011,26:014036.