实现超导量子比特芯片的微纳加工方法MICROFABRICATION METHODS FOR REALIZING SUPERCONDUCTING QUBIT CHIPS
宿非凡,杨钊华
摘要(Abstract):
近年来随着各个科技强国和科技巨头企业的高度重视,超导量子计算技术发展迅速,在不到10年的时间内单个超导量子比特的退相干时间增长了5个数量级,从纳秒提高到了百微秒的量级,并有望提高到毫秒量级甚至秒的量级。超导量子比特芯片的制备是实现超导量子计算的基础,作为“物理前沿介绍——超导量子计算”系列的第六篇,本文系统阐述制备超导量子比特及其辅助器件芯片的微纳加工方法,并对制备方法的发展趋势作展望。通过本文,旨在帮助广大高校物理专业教师、高年级本科生、研究生以及对超导量子计算感兴趣的理工科背景读者系统了解实现超导量子比特芯片的微加工方法与工艺,全面地、实物化地理解超导量子计算技术。
关键词(KeyWords): 超导量子比特;约瑟夫森结;空气桥
基金项目(Foundation):
作者(Author): 宿非凡,杨钊华
参考文献(References):
- [1] 宿非凡,杨钊华,范桁等.超导量子比特[J].大学物理,2021,40:7-14.SU F F,YANG Z H,FAN H,et al.Superconducting qubit[J].College Physics,2021,40:7- 14.(in Chinese)
- [2] MARTINIS J M,MEGRANT.UCSB final report for the CSQ program:Review of decoherence and materials physics for superconducting qubits[J].ArXiv:1410.5793 [quant-ph]
- [3] SU F F,LIU W Y,XU H K,et al.Superconducting phase qubits with shadow-evaporated Josephson junctions[J].Chin.Phys.B ,2017,26:060308.
- [4] GAMBETTA J M,MURRAY C E,FUNG Y K K,et al.Investigating surface loss effects in superconducting transmon qubits[J].IEEE Trans.Appl.Supercond.2017,27:1.
- [5] BLOK M S,RAMASESH V V,SCHUSTER T,et al.Quantum information scrambling in a superconducting qutrit processor[J].arXiv:2003.03307v1 [quant-ph]
- [6] VISSERS M R,GAO J,WISBEY D S,et al.Low loss superconducting titanium nitride coplanar waveguide resonators[J].Appl.Phys.Lett.2010,97:232509.
- [7] PREMKUMAR A,WEILAND C,HWANG S,et al.Microscopic relaxation channels in materials for superconducting qubits[J].arXiv:2004.02908v1 [quant-ph]
- [8] EARNEST C T,BéJANIN J H,McCONKEY T G,et al.Substrate surface engineering for high-quality silicon/aluminum superconducting resonators[J].Supercond.Sci.Tech.2018,31:125013
- [9] 宿非凡,杨钊华.超导量子比特谱[J].物理与工程,2021,31(6):73-83,96.SU F F,YANG Z H.Superconducting qubit spectrum[J].Physics and Engineering,2021,31(6):73-83,96.(in Chinese)
- [10] LIU W Y,XU H K,SU F F,et al.Coupled superconducting qudit-resonator system:Energy spectrum,state population,and state transition under microwave drive[J].Phy.Rev.B,2018,97:094513.
- [11] SWINGLE B,KARAMLOU A H,YANAY Y.Probing quantum information propagation with out-of-time-ordered correlators[J].Nat.Phys.2018,14:988.
- [12] SALATHé Y,MONDAL M,OPPLIGER M,et al.Digital quantum simulation of spin models with circuit quantum electrodynamics[J].Phys.Rev.X 2015,5:021027.
- [13] BARENDS R,LAMATA L,KELLY J,et al.Digital quantum simulation of fermionic models with a superconducting circuit[J].Nat.Commun.,2015,6:7654.
- [14] ZHONG Y P,XU D,WANG P,et al.Emulating anyonic fractional statistical behavior in a superconducting quantum circuit[J].Phys.Rev.Lett.2016,117:110501.
- [15] FLURIN E,RAMASESH V V,HACOHEN-GOURGY S,et al.Observing topological invariants using quantum walks in superconducting circuits[J].Phys.Rev.X 2017,7:031023.
- [16] KJAERGAARD A,SCHWARTZ M E,BRAUMüLLER J,et al.Superconducting qubits:Current state of play[J].Ann.Rev.Cond.Matter Phys.2020,11:369.
- [17] KREIKEBAUM J M,DOVE A,LIVINGSTON W,et al.Optimization of infrared and magnetic shielding of superconducting TiN and Al coplanar microwave resonators[J].Supercond.Sci.Tech.2016,29:104002.
- [18] SEGALL K,CRANKSHAW D,NAKADA D,et al.Impact of time-ordered measurements of the two states in a niobium superconducting qubit structure[J].Phys.Rev.B 2003,67:220506.
- [19] SU F F,YANG Z H,ZHAO S K,et al.Observation of the exceptional point in superconducting qubit with dissipation controlled by parametric modulation[J].Chin.Phys.B 2021,30:100304.
- [20] PREMKUMAR A,WEILAND C,HWANG S.Microscopic relaxation channels in materials for superconducting qubits[J].Commun Mater 2021,2:72.
- [21] CAVA R J,BATLOGG B,KRAJEWSKI J J,et al.Electrical and magnetic properties of Nb2O5-δ crystallographic shear structures[J].Phys.Rev.B 1991,44:6973.
- [22] VERJAUW J,POTONIK A,MONGILLO M,et al.Investigation of microwave loss induced by oxide regrowth in High-Q Niobium resonators[J].Phys.Rev.Applied,2021,16:014018.
- [23] GLADCZUK L,PATEL A,PAUR C S,et al.Tantalum films for protective coatings of steel[J].Thin Solid Films,2004,467:150.
- [24] PLACE A P M ,RODGERS L V H,MUNDADA P,et al.New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds[J].Nat.Comm.,2021,12:1779.
- [25] OHYA S,CHIARO B,MEGRANT A,et al.Room temperature deposition of sputtered TiN films for superconducting coplanar waveguide resonators[J].Supercond.Sci.Tech.,2014,27:015009.
- [26] LISENFELD J,BILMES A,MEGRANT A,et al.Electric field spectroscopy of material defects in transmon qubits[J].npj Quantum Info.,2019,5:105.
- [27] PICKARD C J,ERREA I,EREMETS M I.Superconducting hydrides under pressure[J].Ann.Rev.Condens.Matter Phys.,2020,11:57.
- [28] LOCK E H,XU P,KOHLER T,et al.Using surface engineering to modulate superconducting coplanar microwave resonator performance[J].IEEE Trans.Appl.Supercond.2019,29:1700108.
- [29] LEONARD E,BECK M A,NELSON J,et al.Digital coherent control of a superconducting qubit[J].Phys.Rev.Appl.,2019,11:014009.
- [30] SU F F,YANG Z H,ZHAO S K,et al.Fabrication and characterization of superconductingmultiqubit device with niobium base layer[J].Chin.Phys.B,2021,30:100304.
- [31] 宿非凡,杨钊华.约瑟夫森效应与超导量子电路的基本物理原理[J].物理与工程,2021,31(5):28-33.SU F F,YANG Z H.Josephson effect and the basic physical principles of superconducting quantum circuits[J].Physics and Engineering,2021,31(5):28-33.(in Chinese)
- [32] DOLAN G J.Offset masks for lift-off photo processing[J].Appl.Phys.Lett.,1977,31:337.
- [33] CAI N,ZHOU G,MüLLER K,et al.Temperature and pressure dependent Mott potentials and their influence on self-limiting oxide film growth[J].Appl.Phys.Lett.,2012,101:171605.
- [34] AMBEGAOKAR V,BARATOFF A.Tunneling between superconductors[J].Phys.Rev.Lett.,1963,10:486.
- [35] BILMES A,NEUMANN A K,VOLOSHENIUK S,et al.In-situ bandaged Josephson junctions for superconducting quantum processors[J].arXiv:2101.01453v2 [quant-ph]
- [36] OSMAN A,SIMON J,BENGTSSON A,et al.Simplified Josephson-junction fabrication process for reproducibly high-performance superconducting qubits[J].arXiv:2011.05230v1 [cond-mat.supr-con]
- [37] WOODS W,CALUSINE G,MELVILLE A,et al.Determining interface dielectric losses in superconducting Coplanar-Waveguide resonators[J].Phys.Rev.Appl.,2019,12:014012.
- [38] ROSENBERG D,WEBER S J,CONWAY D,et al.Solid-state qubits:3D integration and packaging[J].IEEE Microwave Magazine,2020,21:72.
- [39] MüLLER C,COLE J H,J.LISENFELD.Towards understanding two-level-systems in amorphous solids:insights from quantum circuits[J].Rep.Prog.Phys.,2019,82:124501.
- [40] WANG C,AXLINE C,GAO Y Y,et al.Surface participation and dielectric loss in superconducting qubits[J].Appl.Phys.Lett.,2015,107:162601.
- [41] BARENDS R,VERCRUYSSEN N,ENDO A,et al.Superconducting quantum bits[J].Appl.Phys.Lett.,2010,97:023508.
- [42] VERJAUW J,POTONIK A,MONGILLO M,et al.Investigation of microwave loss induced by oxide regrowth in High-Q Niobium resonators[J].Phys.Rev.Applied,2021,16:014018.
- [43] LEDUC H G,BUMBLE B,DAY P K,et al.Titanium nitride films for ultrasensitive microresonator detectors[J].Appl.Phys.Lett.,2010,97:102509.
- [44] GLADCZUK L,PATEL A,PAUR C S,et al.Tantalum films for protective coatings of steel[J].Thin Solid Films,2004,467:150.
- [45] KOSEN S,LI H X,ROMMEL M,et al.Building blocks of a flip-chip integrated superconducting quantum processor[J].arXiv:2112.02717v1 [quant-ph]